

Parallel Wavelet Transform for Large Scale Image
Processing

D. Chaver, M. Prieto, L. Piñuel, F. Tirado
Departamento de Arquitectura de Computadores y Automática

Facultad de C.C. Físicas. Universidad Complutense.
Ciudad Universitaria s/n 28040 Madrid.

{dani02,mpmatias,lpinuel,ptirado}@dacya.ucm.es

Abstract
In this paper we discuss several issues relevant to the
parallel implementation of a 2-D Discrete Wavelet
Transform (DWT) on general purpose multiprocessors.
Our interest in this transform is motivated by its usage in
an image fusion application which has to manage large
image sizes, making parallel computing highly advisable.
We have also paid much attention to memory hierarchy
exploitation, since it has a tremendous impact on
performance due to the lack of spatial locality when the
DWT processes image columns.
Keywords—2-D wavelet transform, image fusion, Cache-
aware wavelet.

1 Introduction

Wavelets and the corresponding wavelet transforms have
been one of the most important developments in image
processing over the last decade. Although the most
outstanding success of this technology has been achieved
in image and video coding (state-of-the-art standards such
as MPEG-4 or JPEG 2000 are based on the discrete
wavelet transform), it has also proven to be a valuable tool
for a wide variety of applications in many different fields.

Our interest in this transform is motivated by its
application to image fusion [1]. This operation usually
involves two stages: a preliminary registration step (where
images from different sources would be geometrically
registered in order to be superimposed) followed by the
real merging process. A simple method for this second
step could be to take the average of the source images,
pixel by pixel. However, along with simplicity comes
several undesired side effects. The basic idea behind
wavelet-based fusion schemes is to combine the wavelet
decompositions of the source images so that the fused
image is obtained by taking the inverse transform.

The system has to merge high resolution panchromatic
data (for example 10-m resolution) with simultaneously
acquired low resolution multispectral data (for example
20-m resolution) [2]. In this paper we have studied how to
reduce the computational cost of this system, or rather, its
wavelet transform component, which could be very time-

consuming despite its algorithmic complexity being
proportional to the problem size. Parallel computing is a
direct way of speeding up the wavelet transform, given
that this application has to manage large image sizes.

Focusing on the parallel discrete wavelet transform, a
significant amount of work has already been done for all
sorts of high performance computers. However, we should
remark that most of the previous research has
concentrated on special purpose hardware (from
application specific VLSI architectures and DSPs [3][4],
to FPGAs [5]) and out-of-date SIMD architectures such as
the Connection Machine [6].

We have centered our research on general purpose
multiprocessor systems. Work on these kind of systems
includes [7], where two different parallel strategies for the
2-D wavelet transform were compared on the IBM SP2
and the Fujitsu VPP3000 systems. However, it is limited
to the so called Standard decomposition of the 2-D FWT
[8]. In [9] a new parallel wavelet transform is presented,
where communication is reduced at the cost of changing
the wavelet transform semantic (basically, each processor
views each data-block as an independent data-set and
applies the wavelet transform on this block, independently
of other blocks). Other work includes [10], where several
strategies for the wavelet-packet decomposition are
studied, and [11], where a parallel wavelet-based
compression algorithm based on OpenMP is analyzed.
This paper builds on [7] and extends it by considering the
Non-standard form, which is the decomposition employed
by the fusion scheme investigated.

In addition to the use of parallelism, it is of great
importance to use memory resources efficiently, because,
as is well known, the maximum performance obtainable
from current microprocessors is mostly limited by the
memory access in many applications. In [12] S. Chatterjee
has explored several techniques to improve both Standard
and Non-Standard versions. A new algorithm was
proposed in which a non-linear layout, called the Morton
layout, was used to store the image instead of the default
C language row-major layout (column-major in Fortran).
This new layout improves both data cache and TLB reuse.
The tuning of our algorithm has been done just using a

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

loop tiling technique since the non-linear layout makes the
parallel implementation difficult. Nevertheless, as will be
shown later, the improvement that can be achieved with
loop tiling is satisfactory enough.

The rest of this paper is organized as follows. The
investigated wavelet transform is illustrated in Section 2.
In Section 3 we show how to improve the data locality of
the algorithm by means of tiling. The different strategies
employed to get a parallel implementation of the 2-D
DWT are illustrated in section 4 along with a performance
study of the different approaches. Finally, the paper ends
with some conclusions.

2 2-D Wavelet Transform

The discrete wavelet transform (DWT) can be efficiently
performed using a pyramidal algorithm based on
convolutions with Quadrature Mirror Filters (QMF). The
wavelet representation of a discrete signal S can be
computed by convolving S with the lowpass filter H(z)
and highpass filter G(z) and downsampling the output by
2. This process decomposes the original image into two
subbands, usually denoted as coarse scale approximation
(lower band) and detail signal (higher band). This
transform can be easily extended to multiple dimensions
by using separable filters, i.e., by applying separate 1-D
transforms along each dimension. In particular, we have
considered two different 2-D versions (see Fig. 1),
commonly known as the Standard and Non-standard
decompositions [8].

Non Standard

Standard

Fig 1. The Standard (top chart) and the Non-
Standard (Bottom chart) 2-D DWT algorithms.

The Standard decomposition can be easily obtained by

performing the complete 1-D DWT on all the rows of the
image followed by another 1-D DWT applied to each
column as if the transformed rows were themselves an
image. In particular, the investigated transform uses
Daubechies (9,7) tap biorthogonal filters [13] and
symmetric extensions are applied at image boundaries.

The Non-standard version alternates between
operations on rows and columns, i. e., one stage of the 1-
D DWT is applied first to the rows of the image and then
to the columns, as shown in Fig. 1. This produces four
smaller filtered images and to complete the
transformation, the same process is applied recursively to

the quadrant containing the coarse scale approximation in
both directions. This version is slightly more efficient to
compute than the Standard decomposition since the data
on which computations are performed are reduced to a
quarter in each step, as opposed to a half in the Standard
case.

Although the investigated fusion application employs
the Non-standard decomposition, for the sake of
completeness we have also studied the Standard scheme.

3 Memory Hierarchy Optimization

As is well known, the maximum performance obtainable
from current microprocessors is mostly limited by
memory access. In this context and assuming a row-major
layout for the images, as performed by the C language for
2D static arrays, the main bottleneck of the 2-D DWT is
caused by the process of image columns.

Among the different techniques studied in literature to
improve memory exploitation of 2-D wavelet transforms,
one of the most outstanding approach was introduced in
[12]. The proposed optimization is based on a non-linear
layout of 2D data sets, called the Morton layout, which is
shown in figure 2. The running time improvements (due to
data cache and TLB reuse) of this layout achieved on a
DEC workstation (equipped with a 500 MHz Alpha 21164
microprocessor and 2 MB of L3 cache) reach up to 60%
for both Standard and Non-Standard decompositions [12].

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50 51 54 55

40 41 44 45 56 57 60 61

42 43 46 47 58 59 62 63

tc n

m

tr

tc

tr

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50 51 54 55

40 41 44 45 56 57 60 61

42 43 46 47 58 59 62 63

tc n

m

tr

tc

tr

Fig 2. Morton layout.

However, it is difficult to apply this strategy on a
parallel setting since this layout makes data
decomposition difficult. The tuning of our algorithm has
been done just using a loop tiling strategy. Instead of
processing every image column all the way down in one
step, which produces very low data locality (on a row-
major layout cache lines are aligned along rows, not along
columns) the algorithm is improved by splitting the
column processing into a certain number of stages so that
spatial locality can be more effectively exploited (see Fig.
3). The benefits of this optimization are shown in Fig. 4.
The experimental results have been obtained performing
only one level of the wavelet decomposition (i.e. in this
case, the Standard and the Non-Standard versions are
equivalent) using different image sizes. As a testing
platform we have employed one processor of a SGI

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

Origin 2000 system equipped with 250 MHz R10000
microprocessors and 4 MB of L2 cache.

Block
Size

x

y

Fig 3. Loop tiling optimization. Column
processing is split in num_of_cols/block_size
stages to exploit more effectively data locality.

1024x1024 pixel image

0.2

0.25

0.3

0.35

0.4

0.45

10
24 51

2
25

6
12

8 64 32 16

Block Size

Ti
m

e
 (

s)

2048x2048 pixel image

0.8

1

1.2

1.4

1.6

1.8

20
48

10
24 51

2
25

6
12

8 64 32 16

Block Size

Ti
m

e
 (

s)

Fig 4. Running time benefits of the Loop tiling
optimization for 10242 (top chart) and 20482
(bottom chart) pixel images.

To measure the benefits of the optimization, the

performance metric used in [12] is the arithmetic mean
over a range of problem sizes of the ratio of the execution
time for the optimized code (the one with optimal block
size in our case) to the execution time of the non-
optimized counterpart. However the sizes employed are
not given, which makes a fair comparison impossible.
Nevertheless, just to give some numbers, in our code this
ratio improves (smaller numbers are better) with problem
size and varies from 0.82 for the 10242 size to 0.45 for the
40962 case. The average ratio reported in [12] for the DEC
workstation mentioned above is 0.4. It is our opinion that
these results suggest that although column processing
could be further improved with a non-linear layout, the

optimization achieved by loop tiling is satisfactory
enough. In addition, given that a non-linear layout makes
data decomposition awkward our approach seems more
reasonable on a parallel setting.

Due to temporal locality effects, the optimal block size
decreases with problem size. In this way, whereas for a
10242 image, the optimal block size is around 128 rows, it
drops to 64 rows for the 20482 case, 32 rows for the 40962
problem and so on. Using the hardware counters available
on the R10000, we have realized that the main impact of
this optimization is on L1 data cache and TLB reuse,
whereas the reduction of L2 cache miss is insignificant.
For the 20482 problem size for example, loop tiling almost
eliminates TLB misses compared to a TLB miss ratio of
almost 1% for the non-optimized version and reduces the
L1 miss ratio to 0.6% compared to 5% for the non-
optimized code.

From now on in this work, the optimal block size will
always be used. We should remark that this optimal size
may vary depending on the platform used and the local
image size, which is a function of the number of
processors and the wavelet level considered.

4 Parallel Wavelet

The most straightforward approach to parallelizing regular
applications such as the 2-D DWT using the message
passing programming model consists in applying the
general principle of domain decomposition, so that each
process runs essentially the same program on its share of
the data.

 1A) Parallel
transposition

1) Y - partitioning

2) X - partitioning

Parallel 1D DWT

Local
transposition

1B) Parallel
1-D DWT

Fig 5. Different data decomposition strategies for
the 2-D DWT.

In [7], where just the Standard wavelet decomposition
is investigated, two different one-dimensional
decompositions are considered, which we identified as X
and Y partitioning (see Fig. 5). The Y-partitioning

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

approach (denoted as replicated FWT in [7]) , which is the
most appealing scheme from an implementational point of
view, is based on a parallel image transposition operation
such that the 1-D DWT processing is done without any
communication. However, the experimental results
obtained on an IBM SP2 system showed that the parallel
transpose operation dominates the computation time.
Therefore, although the X-partitioning (called
communication-efficient FWT in [7]) approach demands
more coding effort (a parallel 1-D DWT is required on
row processing), it is the best choice from a performance
point of view since it avoids the time-consuming parallel
transpose operation.

Guided by these previous results, we have investigated
in this work the same X-partitioning scheme (apart from
some memory optimizations) and a different Y-
partitioning approach (see Fig. 5) in which we do not use
any kind of image transposition at the expense of a
parallel 1-D DWT for column processing.

4.1 Impact of Image Transposition

0

0.5

1

1.5

2

2.5

3

3.5

Std

1024
Y

Std

1024
X

NStd

1024
Y

NStd

1024
X

Std

2048
Y

Std

2048
X

NStd

2048
Y

NStd

2048
X

T
im

e
(s

)

Columns
Rows

Fig 6. Performance difference of both
approaches (X-partitioning versus Y-partitioning)
in a sequential setting.

Fig. 6 shows the performance difference of both
approaches on a sequential setting, i.e. just using one SGI
Origin 2000 processor, performing the complete wavelet
decomposition. The differences between the investigated
schemes are caused by the different processing of the
image columns. The X-partitioning processes image
columns in the same way as image rows at the expense of
a transposition, in which another loop tiling optimization
has to be applied (an important point not considered in
[7]). In the X-partitioning counterpart (the Y-partitioning),
the transpose operation is avoided and image columns are

processed using the loop tiling optimization discussed in
section 3.

For the Standard wavelet decomposition, the best
choice is the X-partitioning approach (around 7% better
than the Y-partitioning counterpart almost independently
of the image sizes) since the extra cost of the image
transpose operation is by far compensated by the efficient
processing of all the image columns. For the Non-
Standard decomposition, the best choice is less obvious,
since the X-partitioning approach requires in this case
twice the number of wavelet levels transpositions
(remember that the Non-Standard algorithm alternates
between operations on rows and columns at every wavelet
level). For the investigated images sizes the Y-partitioning
slightly overcomes the X-partitioning by a small 1% to
3%.

4.2 Replication

Given a certain number of processors, the parallel version
is only worthwhile for images larger than some minimal
size. Due to the pyramidal structure of the DWT, this
means that from some wavelet level, which we have
denoted as the critical level (that depends on the parallel
topology and the number of filter coefficients), a parallel
DWT implementation cannot improve the execution time
of its sequential counterpart. Indeed, it can deteriorate the
performance due to an unsatisfactory communication to
computation ratio.

This problem, which is very common in other multi-
level algorithms [14], may be alleviated in some cases by
setting the number of levels such that the maximum level
is the critical one. This approach, which is the strategy
considered in [7], is well suited for the investigated 2-D
DWT since the need of a complete wavelet decomposition
is not usually required in many applications. Indeed, the
efficiencies reported in [7] for the Y-partitioning scheme
applied to the Standard wavelet decomposition are quite
satisfactory .

We have tried to go further by performing the
complete decomposition, given that it represents the worst
case from a parallel computing point of view. In
particular, the strategy that we have employed in both
partitionings to manage the critical level problem is based
on a data replication operation. In this way, from the
critical level all the processes can independently perform
the rest of the computation. As Fig. 7 shows, this strategy
only achieves satisfactory efficiencies for the Non-
Standard version. Remember that in the Standard
decomposition the computation is only reduced by half in
each step, which means that more data has to be replicated
(i.e. many more communications and replicated
computations are required) compared to the Non-Standard
decomposition.

The comparison between the X and Y-partitioning will
be considered in the next section.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

1024x1024 pixel image size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 4 8 12 16 20 24 28 32

Processors

E
ff

ic
ie

n
cy

Std-Y

NStd-Y

Std-X

NStd-X

0

0.2

0.4

0.6

0.8

1

1.2

1024 2048 4096

Image Size

E
ff

ic
ie

n
cy

 (
32

 P
ro

ce
ss

o
rs

)

Std-Y NStd-Y

Std-X NStd-X

Fig 7. Parallel efficiency of the Y-partitioning
strategy on the SGI Origin 2000 for both the
Standard and Non-Standard decompositions (top
chart) and parallel efficiency using 32 processors
for all the investigated configurations (bottom
chart).

4.3 X-partitioning versus Y-partitioning

To analyze the experimental measurements, we have split
the running time of the DWT into four different
components: the computational cost of processing rows
and columns up to the critical level (without
communication), the communication overhead up to that
level and the time expended on the replicated calculations,
which also includes the communication cost required to
replicate data.

Fig. 8 compares both approaches for the Standard
decomposition using 32 processors. It is very clear from
this figure that the scalability of the algorithm is limited
by the replication. Nevertheless, we should note that this
strategy achieves satisfactory results if subcritical levels

are not processed (the execution profile in this case is just
the same of Fig. 8 without the replication overhead).

Comparing both approaches, the Y-partitioning is the
best choice (apart from the differences on the image
columns) independently of the image size. The main
reason behind this fact is that communications arising
from the replication phase are more expensive in the X-
Partitioning. This difference is due to data partitioning
since it determines the data structure of the boundaries
that will be interchanged between the processors. In the Y-
partitioning, artificial boundaries (halos) are a set of
contiguous in-memory data (as long as our code is written
in C). However, in the X-partitioning, the data belonging
to the interchangeable boundaries are strided, i.e. each
element is a fixed number of elements away in memory
from the preceding and subsequent elements of the halo.
As we have previously reported [15], the bandwidth
reduction due to strided memory access is quite
significant in the SGI Origin 2000, which explains the
difference.

Standard Decomposition
(32 Processors)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1024 Y 1024 X 2048 Y 2048 X 4096Y 4096 X
Image size

T
im

e
 (

s)

Communication

Replication

Columns

Rows

Fig 8. Performance difference between both
approaches (X-partitioning versus Y-partitioning)
on the Standard decomposition using 32
processors.

Fig. 9 compares both approaches for the Non-Standard

decomposition. First, it is interesting to note that the
parallel efficiency of the Non-Standard version is very
satisfactory since the extra cost of replication is
insignificant. Comparing both approaches, the Y-
partitioning is again the best choice independently of the
image size. In this case, there are two reasons for this
result. As we have discussed above, the X-partitioning
requires twice the number of wavelet levels transpose
operations, whose extra cost is not compensated by the
row-like processing of all the image columns. On the
other hand, communications are again more expensive in
the X-Partitioning for the same reasons as those explained
for the Standard version.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

Non--Standard Decomposition
(32 Processors)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1024 Y 1024 X 2048 Y 2048 X 4096Y 4096 X
Image size

T
im

e
 (s

)

Communication

Replication

Columns

Rows

Fig 9. Performance difference of both
approaches (X-partitioning versus Y-partitioning)
on the Non-Standard decomposition using 32
processors.

5 Conclusions

In this work, different strategies to get a parallel
implementation of the 2-D wavelet transform have been
studied. In particular, we have considered two different
versions, commonly known as the Standard and Non-
standard decompositions. We should remark that the
overall objective of our research is to develop a parallel
image fusion application based on the wavelet transform.
Although in this paper we have focused on the wavelet
transform, future research involves the parallelization of
the whole fusion application.

For the Non-Standard version, the proposed strategy
not only achieves satisfactory efficiencies but also
outperforms the scheme employed in [7] due to a lower
communication cost. These results also suggest that for
this decomposition a major effort should not be made in
developing new algorithm where communication is
reduced at the cost of changing the wavelet transform
semantic [9].

Although the investigated fusion application is based
on the Non-Standard decomposition, for the sake of
completeness we have also studied the Standard scheme.
In this second case, the data replication required (if the
complete wavelet decomposition is applied) limits the
scalability of the algorithm. Nevertheless, we should
mention that in some situations the complete
decomposition is not required and in that case the parallel
Standard DWT scales satisfactorily [7].

6 Acknowledgments

This work has been supported by the Spanish research
grant TIC 99-0474. We would like to thank the CSC
(Centro de Supercomputación Complutense) for providing
access to the SGI Origin 2000 system that has been used
in this research.

7 References

[1] Z. Zhang and R. S. Blum. A Categorization of Multiscale-

Decomposition-Based Image Fusion Schemes with a
Performance Study for a Digital Camera Application. Proc.
of the IEEE, Vol. 87(8):1315-1325, Aug. 1999.

[2] B. Garguet-Duport, J. Girel, J.M. Chassery and G. Pautou.
The use of Multiresolution Analysis and Wavelet Transform
for Merging SPOT Panchromatic and Multispectral Image
Data. Photogrammetric Engineering and Remote Sensing,
Vol. 62 (9):1057-1066. Sep. 1996.

[3] M. Martina, G.Masera, G.Piccinini, M.Zamboni
A VLSI Architecture for IWT (Integer Wavelet Transform)
Proc. of 43rd Midwest Symposium on Circuits and Systems,
USA, Aug. 2000.

[4] M. A. Trenas. Arquitecturas y Aplicaciones de la
Transformada Wavelet. Ph. D. Thesis. Dept. de
Arquitectura de Computadores, Universidad de Malaga,
Nov. 2000.

[5] C. Graves and C. Gloster. Use of Dynamically
Reconfigurable Logic in Adaptive Wavelet Packet
Applications. Proc. of the 5th Canadian Workshop on
Field-Programmable Devices, Jun. 1998.

[6] Mats Holmström. Parallelizing the fast wavelet transform.
Parallel Computing, 11(21):1837-1848, Apr. 1995.

[7] O.M. Nielsen and M. Hegland. Parallel Performance of
Fast Wavelet Transform. International Journal of High
Speed Computing, 11 (1): 55-73, Jun 2000.

[8] A. Fournier. Wavelet and Their Application in Computer
Graphics. Siggraph' 95 Course notes.

[9] L. Yang and M. Misra. Coarse-Grained Parallel Algorithms
for Multi-Dimensional Wavelet Transforms. The journal of
Supercomputing 11:1-22 , 1997.

[10] M. Feil and A. Uhl. Multicomputer algorithms for wavelet
packet image decomposition. Proc. of the IPDPS, pp. 793-
798, Mexico, 2000.

[11] M. Lucka and T. Sorevik. Parallel Wavelet-Based
Compression of Two-Dimensional Data. Proceedings of
Algorithmy pp. 1-10, 2000.

[12] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra and M.
Thottethodi. Nonlinear Array Layouts for Hierarchical
Memory Systems. Proc. of ACM ICS, pp. 444-453, Greece,
Jun 1999.

[13] I. C. Daubechies. Ten Lectures on Wavelets. Philadelphia:
SIAM, 1992.

[14] M. Prieto, R. Montero, D. Espadas, I. M. Llorente and F.
Tirado. Parallel multigrid for anisotropic elliptic equations.
Journal of Parallel and Distributed Computing, Academic
Press, 61:96–114, Jan. 2001.

[15] M. Prieto, I. M. Llorente and F. Tirado. Data Locality
Exploitation in the Decomposition of Regular Domain
Problems. IEEE Trans. on Parallel and Distributed Systems,
11(11):1141-1149, Nov. 2000.

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

	IPDPS 2002
	Return to Main Menu

