
   

Parallel Wavelet Transform for Large Scale Image 
Processing 

 
 

D. Chaver, M. Prieto, L. Piñuel, F. Tirado 
Departamento de Arquitectura de Computadores y Automática 

Facultad de C.C. Físicas. Universidad Complutense. 
Ciudad Universitaria s/n 28040 Madrid. 

{dani02,mpmatias,lpinuel,ptirado}@dacya.ucm.es 
 
 

Abstract 
In this paper we discuss several issues relevant to the 
parallel implementation of a 2-D Discrete Wavelet 
Transform (DWT) on general purpose multiprocessors. 
Our interest in this transform is motivated by its usage in 
an image fusion application which has to manage large 
image sizes, making parallel computing highly advisable. 
We have also paid much attention to memory hierarchy 
exploitation, since it has a tremendous impact on 
performance due to the lack of spatial locality when the 
DWT processes image columns.  
Keywords—2-D wavelet transform, image fusion, Cache-
aware wavelet. 

 
1 Introduction 

 
Wavelets and the corresponding wavelet transforms have 
been one of the most important developments in image 
processing over the last decade. Although the most 
outstanding success of this technology has been achieved 
in image and video coding  (state-of-the-art standards such 
as MPEG-4 or JPEG 2000 are based on the discrete 
wavelet transform), it has also proven to be a valuable tool 
for a wide variety of applications in many different fields.  

Our interest in this transform is motivated by its 
application to image fusion [1]. This operation usually 
involves two stages: a preliminary registration step (where 
images from different sources would be geometrically 
registered in order to be superimposed) followed by the 
real merging process.  A simple method for this second 
step could be to take the average of the source images, 
pixel by pixel. However, along with simplicity comes 
several undesired side effects. The basic idea behind 
wavelet-based fusion schemes is to combine the wavelet 
decompositions of the source images so that the fused 
image is obtained by taking the inverse transform.  

The system has to merge high resolution panchromatic 
data (for example 10-m resolution) with simultaneously 
acquired low resolution multispectral data (for example 
20-m resolution) [2]. In this paper we have studied how to 
reduce the computational cost of this system, or rather, its 
wavelet transform component, which could be very time-

consuming despite its algorithmic complexity being 
proportional to the problem size. Parallel computing is a 
direct way of speeding up the wavelet transform, given 
that this application has to manage large image sizes. 

Focusing on the parallel discrete wavelet transform, a 
significant amount of work has already been done for all 
sorts of high performance computers. However, we should 
remark that most of the previous research has 
concentrated on special purpose hardware (from 
application specific VLSI architectures and DSPs [3][4], 
to FPGAs [5]) and out-of-date SIMD architectures such as 
the Connection Machine [6]. 

We have centered our research on general purpose 
multiprocessor systems. Work on these kind of systems 
includes [7], where two different parallel strategies for the 
2-D wavelet transform were compared on the IBM SP2 
and the Fujitsu VPP3000 systems. However, it is limited 
to the so called Standard decomposition of the 2-D FWT 
[8]. In [9] a new parallel wavelet transform is presented, 
where communication is reduced at the cost of changing 
the wavelet transform semantic (basically, each processor 
views each data-block as an independent data-set and 
applies the wavelet transform on this block, independently 
of other blocks). Other work includes [10], where several 
strategies for the wavelet-packet decomposition are 
studied, and [11], where a parallel wavelet-based 
compression algorithm based on OpenMP is analyzed. 
This paper builds on [7] and extends it by considering the 
Non-standard form, which is the decomposition employed 
by the fusion scheme investigated.  

In addition to the use of parallelism, it is of great 
importance to use memory resources efficiently, because, 
as is well known, the maximum performance obtainable 
from current microprocessors is mostly limited by the 
memory access in many applications. In [12] S. Chatterjee 
has explored several techniques to improve both Standard 
and Non-Standard versions. A new algorithm was 
proposed in which a non-linear layout, called the Morton 
layout, was used to store the image instead of the default 
C language row-major layout (column-major in Fortran). 
This new layout improves both data cache and TLB reuse. 
The tuning of our algorithm has been done just using a 
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loop tiling technique since the non-linear layout makes the 
parallel implementation difficult. Nevertheless, as will be 
shown later, the improvement that can be achieved with 
loop tiling is satisfactory enough. 

The rest of this paper is organized as follows. The 
investigated wavelet transform is illustrated in Section 2. 
In Section 3 we show how to improve the data locality of 
the algorithm by means of tiling. The different strategies 
employed to get a parallel implementation of the 2-D 
DWT are illustrated in section 4 along with a performance 
study of the different approaches. Finally, the paper ends 
with some conclusions. 

 
2 2-D Wavelet Transform 

 
The discrete wavelet transform (DWT) can be efficiently 
performed using a pyramidal algorithm based on 
convolutions with Quadrature Mirror Filters (QMF). The 
wavelet representation of a discrete signal S can be 
computed by convolving S with the lowpass filter H(z) 
and highpass filter G(z) and downsampling the output by 
2. This process decomposes the original image into two 
subbands, usually denoted as coarse scale approximation  
(lower band) and detail signal (higher band). This 
transform can be easily extended to multiple dimensions 
by using separable filters, i.e., by applying separate 1-D 
transforms along each dimension. In particular, we have 
considered two different 2-D versions (see Fig. 1), 
commonly known as the Standard and Non-standard  
decompositions [8].  

 

Non Standard 

Standard 

 

Fig 1. The Standard (top chart) and the Non-
Standard (Bottom chart) 2-D DWT algorithms. 

 
The Standard decomposition can be easily obtained by 

performing the complete 1-D DWT on all the rows of the 
image followed by another 1-D DWT applied to each 
column as if the transformed rows were themselves an 
image. In particular, the investigated transform uses 
Daubechies (9,7) tap biorthogonal filters [13] and 
symmetric extensions are applied at image boundaries. 

The Non-standard version alternates between 
operations on rows and columns, i. e., one stage of the 1-
D DWT is applied first to the rows of the image and then 
to the columns, as shown in Fig. 1. This produces four 
smaller filtered images and to complete the 
transformation, the same process is applied recursively to 

the quadrant containing the coarse scale approximation in 
both directions. This version is slightly more efficient to 
compute than the Standard decomposition since the data 
on which computations are performed are reduced to a 
quarter in each step, as opposed to a half in the Standard 
case. 

Although the investigated fusion application employs 
the Non-standard decomposition, for the sake of 
completeness we have also studied the Standard scheme. 

 
3 Memory Hierarchy Optimization 

 
As is well known, the maximum performance obtainable 
from current microprocessors is mostly limited by 
memory access. In this context and assuming a row-major 
layout for the images, as performed by the C language for 
2D static arrays, the main bottleneck of the 2-D DWT is 
caused by the process of image columns.  

Among the different techniques studied in literature to 
improve memory exploitation of 2-D wavelet transforms, 
one of the most outstanding approach was introduced in 
[12]. The proposed optimization is based on a non-linear 
layout of 2D data sets, called the Morton layout, which is 
shown in figure 2. The running time improvements (due to 
data cache and TLB reuse) of this layout achieved on a 
DEC workstation (equipped with a 500 MHz Alpha 21164 
microprocessor and 2 MB of L3 cache) reach up to 60% 
for both Standard and Non-Standard decompositions [12].  
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Fig 2. Morton layout. 
 

However, it is difficult to apply this strategy on a 
parallel setting since this layout makes data 
decomposition difficult. The tuning of our algorithm has 
been done just using a loop tiling strategy. Instead of 
processing every image column all the way down in one 
step, which produces very low data locality (on a row-
major layout cache lines are aligned along rows, not along 
columns) the algorithm is improved by splitting the 
column processing into a certain number of stages so that 
spatial locality can be more effectively exploited (see Fig. 
3). The benefits of this optimization are shown in Fig. 4. 
The experimental results have been obtained performing 
only one level of the wavelet decomposition (i.e. in this 
case, the Standard and the Non-Standard versions are 
equivalent) using different image sizes. As a testing 
platform we have employed one processor of a  SGI 
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Origin 2000 system equipped with 250 MHz R10000 
microprocessors and 4 MB of L2 cache. 

Block 
Size

x

y

 
Fig 3. Loop tiling optimization. Column 
processing is split in num_of_cols/block_size 
stages to exploit more effectively data locality. 
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Fig 4. Running time benefits of the Loop tiling 
optimization for 10242 (top chart) and 20482  
(bottom chart) pixel images.  

 
To measure the benefits of the optimization, the 

performance metric used in [12] is the arithmetic mean 
over a range of problem sizes of the ratio of the execution 
time for the optimized code (the one with optimal block 
size in our case) to the execution time of the non-
optimized counterpart. However the sizes employed are 
not given, which makes a fair comparison impossible. 
Nevertheless, just to give some numbers, in our code this 
ratio improves (smaller numbers are better) with problem 
size and varies from 0.82 for the 10242 size to 0.45 for the 
40962 case. The average ratio reported in [12] for the DEC 
workstation mentioned above is 0.4. It is our opinion that 
these results suggest that although column processing 
could be further improved with a non-linear layout, the 

optimization achieved by loop tiling is satisfactory 
enough. In addition, given that a non-linear layout makes 
data decomposition awkward our approach seems more 
reasonable on a parallel setting. 

Due to temporal locality effects, the optimal block size 
decreases with problem size. In this way, whereas for a 
10242 image, the optimal block size is around 128 rows, it 
drops to 64 rows for the 20482 case, 32 rows for the 40962 
problem and so on. Using the hardware counters available 
on the R10000, we have realized that the main impact of 
this optimization is on L1 data cache and TLB reuse, 
whereas the reduction of L2 cache miss is insignificant. 
For the 20482 problem size for example, loop tiling almost 
eliminates TLB misses compared to a  TLB miss ratio of 
almost 1% for the non-optimized version and reduces the 
L1 miss ratio to 0.6% compared to 5% for the non-
optimized code. 

From now on in this work, the optimal block size will 
always be used. We should remark that this optimal size 
may vary depending on the platform used and the local 
image size, which is a function of the number of 
processors and the wavelet level considered. 

 
4 Parallel Wavelet 

 
The most straightforward approach to parallelizing regular 
applications such as the 2-D DWT using the message 
passing programming model consists in applying the 
general principle of domain decomposition, so that each 
process runs essentially the same program on its share of 
the data.  

   1A)  Parallel  
transposition    

1) Y - partitioning    

2) X - partitioning    

Parallel 1D DWT  

Local  
transposition   

1B) Parallel  
1-D DWT 

 
Fig 5. Different data decomposition strategies for 
the 2-D DWT. 
 

In [7], where just the Standard wavelet decomposition 
is investigated, two different one-dimensional 
decompositions are considered, which we identified as X 
and Y partitioning (see Fig. 5). The Y-partitioning 
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approach (denoted as replicated FWT in [7]) , which is the 
most appealing scheme from an implementational point of 
view, is based on a parallel image transposition operation 
such that the 1-D DWT processing is done without any 
communication. However, the experimental results 
obtained on an IBM SP2 system showed that the parallel 
transpose operation dominates the computation time. 
Therefore, although the X-partitioning (called 
communication-efficient FWT in [7]) approach demands 
more coding effort (a parallel 1-D DWT is required  on 
row processing), it is the best choice from a performance 
point of view since it avoids the time-consuming parallel 
transpose operation.  

Guided by these previous results, we have investigated 
in this work the same X-partitioning scheme (apart from 
some memory optimizations) and a different Y-
partitioning approach (see Fig. 5) in which we do not use 
any kind of image transposition at the expense of a 
parallel 1-D DWT for column processing. 

 
4.1 Impact of Image Transposition 
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Fig 6. Performance difference of both 
approaches (X-partitioning versus Y-partitioning) 
in a sequential setting. 

 
Fig. 6 shows the performance difference of both 
approaches on a sequential setting, i.e. just using one SGI 
Origin 2000 processor, performing the complete wavelet 
decomposition. The differences between the investigated 
schemes are caused by the different processing of the 
image columns. The X-partitioning processes image 
columns in the same way as image rows at the expense of 
a transposition, in which another loop tiling optimization 
has to be applied (an important point not considered in 
[7]). In the X-partitioning counterpart (the Y-partitioning), 
the transpose operation is avoided and image columns are 

processed using the loop tiling optimization discussed in 
section 3. 

For the Standard wavelet decomposition, the best 
choice is the X-partitioning approach (around 7% better 
than the Y-partitioning counterpart almost independently 
of the image sizes) since the extra cost of the image 
transpose operation is by far compensated by the efficient 
processing of all the image columns. For the Non-
Standard decomposition, the best choice is less obvious, 
since the X-partitioning approach requires in this case 
twice the number of wavelet levels transpositions 
(remember that the Non-Standard algorithm alternates 
between operations on rows and columns at every wavelet 
level). For the investigated images sizes the Y-partitioning 
slightly overcomes the X-partitioning by a small 1% to 
3%. 

 
4.2 Replication 

 
Given a certain number of processors, the parallel version 
is only worthwhile for images larger than some minimal 
size. Due to the pyramidal structure of the DWT, this 
means that from some wavelet level, which we have 
denoted as the critical level (that depends on the parallel 
topology and the number of filter coefficients), a parallel 
DWT implementation cannot improve the execution time 
of its sequential counterpart. Indeed, it can deteriorate the 
performance due to an unsatisfactory communication to 
computation ratio.  

This problem, which is very common in other multi-
level algorithms  [14], may be alleviated in some cases by 
setting the number of levels such that the maximum level 
is the critical one. This approach, which is the strategy 
considered in [7], is well suited for the investigated 2-D 
DWT since the need of a complete wavelet decomposition 
is not usually required in many applications. Indeed, the 
efficiencies reported in [7] for the Y-partitioning scheme 
applied to the Standard wavelet decomposition are quite 
satisfactory .  

We have tried to go further by performing the 
complete decomposition, given that it represents the worst 
case from a parallel computing point of view. In 
particular, the strategy that we have employed in both 
partitionings to manage the critical level problem is based 
on a data replication operation. In  this way, from the 
critical level all the processes can independently perform 
the rest of the computation. As Fig. 7 shows, this strategy 
only achieves satisfactory efficiencies for the Non-
Standard version. Remember that in the Standard 
decomposition the computation is only reduced by half in 
each step, which means that more data has to be replicated 
(i.e. many more communications and replicated 
computations are required) compared to the Non-Standard 
decomposition.  

The comparison between the X and Y-partitioning will 
be considered in the next section.  
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Fig 7. Parallel efficiency of the Y-partitioning 
strategy on the SGI Origin 2000 for both the 
Standard and Non-Standard decompositions (top 
chart) and parallel efficiency using 32 processors 
for all the investigated configurations (bottom 
chart). 
 
4.3 X-partitioning versus Y-partitioning 

 
To analyze the experimental measurements, we have split 
the running time of the DWT into four different 
components: the computational cost of processing rows 
and columns up to the critical level (without 
communication), the communication overhead up to that 
level and the time expended on the replicated calculations, 
which also includes the communication cost required to 
replicate data.  

Fig. 8 compares both approaches for the Standard 
decomposition using 32 processors. It is very clear from 
this figure that the scalability of the algorithm is limited 
by the replication. Nevertheless, we should note that this 
strategy achieves satisfactory results if subcritical levels 

are not processed (the execution profile in this case is just 
the same of Fig. 8 without the replication overhead).  

Comparing both approaches, the Y-partitioning is the 
best choice (apart from the differences on the image 
columns) independently of the image size. The main 
reason behind this fact is that communications arising 
from the replication phase are more expensive in the X-
Partitioning. This difference is due to data partitioning 
since it determines the data structure of the boundaries 
that will be interchanged between the processors. In the Y-
partitioning, artificial boundaries (halos) are a set of 
contiguous in-memory data (as long as our code is written 
in C). However, in the X-partitioning, the data belonging 
to the interchangeable boundaries are strided, i.e. each 
element is a fixed number of elements away in memory 
from the preceding and subsequent elements of the halo. 
As we have previously reported [15], the bandwidth 
reduction due to strided memory access is quite 
significant in the SGI Origin 2000, which explains the 
difference.  
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Fig 8. Performance difference between both 
approaches (X-partitioning versus Y-partitioning) 
on the Standard decomposition using 32 
processors. 

 
Fig. 9 compares both approaches for the Non-Standard 

decomposition. First, it is interesting to note that the 
parallel efficiency of the Non-Standard version is very 
satisfactory since the extra cost of replication is 
insignificant. Comparing both approaches, the Y-
partitioning is again the best choice independently of the 
image size. In this case, there are two reasons for this 
result. As we have discussed above, the X-partitioning 
requires twice the number of wavelet levels transpose 
operations, whose extra cost is not compensated by the 
row-like processing of all the image columns. On the 
other hand, communications are again more expensive in 
the X-Partitioning for the same reasons as those explained 
for the Standard version. 
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Fig 9. Performance difference of both 
approaches (X-partitioning versus Y-partitioning) 
on the Non-Standard decomposition using 32 
processors. 

 
5 Conclusions  

 
In this work, different strategies to get a parallel 
implementation of the 2-D wavelet transform have been 
studied. In particular, we have considered two different 
versions, commonly known as the Standard and Non-
standard  decompositions. We should remark that the 
overall objective of our research is to develop a parallel 
image fusion application based on the wavelet transform. 
Although in this paper we have focused on the wavelet 
transform, future research involves the parallelization of 
the whole fusion application. 

For the Non-Standard version, the proposed strategy 
not only achieves satisfactory efficiencies but also 
outperforms the scheme employed in [7] due to a lower 
communication cost. These results also suggest that for 
this decomposition a major effort should not be made in 
developing new algorithm where communication is 
reduced at the cost of changing the wavelet transform 
semantic [9].  

Although the investigated fusion application is based 
on the Non-Standard decomposition, for the sake of 
completeness we have also studied the Standard scheme. 
In this second case, the data replication required (if the 
complete wavelet decomposition is applied) limits the 
scalability of the algorithm. Nevertheless, we should 
mention that in some situations the complete 
decomposition is not required and in that case the parallel 
Standard DWT scales  satisfactorily [7].  
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