AMPLIACIÓN DE ESTRUCTURA DE COMPUTADORES 21 DE JUNIO DE 2002

<u>Problemas</u> 1.- El siguiente fragmento de código se ejecuta en un MIPS segmentado:

and \$5,	, \$3, \$	\$1																	
sw \$4, 10(\$6)																			
lw \$4, 12(\$7)																			
	beq \$7, \$4, 1																		
and \$1																			
or \$14,																			
Suponi			n data		ada a	aaribi	r on o	l hono	o do r	ogiatr	50 x 1	oor ou	1011017		r on o	l mian	no oio	la Ma	atror
sobre e																		10. IVI	JSH al
			ue ia i	igura	ei iiio	memu	o de e	jecuci	ion de	Caua	una u	e ias i	ases u	e ias	msuu	ccione	:8,		
(1,5 pt			1	14		.1: .													
a) Supo	IF	ID	EX	M M	w _B	anza.		,	;	;		r	r	r	r	,	;7	,;	;
	IF	ID	EA	IVI	WB	ļ	ļ	ļ	ļ	ļ		ļ	ļ	ļ		لـــــا	!!	}	
Sub	↓		<u> </u>	<u>.</u>	ļ	; {	<u> </u>	; {		i }		; }	i }	; }	; }	أسسسا	; {		
And	1	_L	<u>i</u> .	<u>i</u>	J]]]		l		l	L	¦ 	<u> </u> 	jj	jj		
Sw	1	<u>.</u>	<u> </u>	<u> </u>]	}]	¦	\	l		l	L	<u> </u>	<u> </u>]]	<u> </u>)
Lw	T	1	Ţ]	}]	}		[[[[[]]	()		1
Beq	Ť	Ţ	Ţ	Ţ	}	}	}	!	1	[[[:	¦]7	; <u>}</u>		}
And	†	Ť	Ť	<u>† </u>	<u> </u>	ļ	ļ	!	İ	ļ		<u> </u>				11	[]		1
Or	†	- 	†		 		†	ļ	†	ļ									
	b) Suponiendo que el salto sí se realiza.																		
Add	TiF	ID	EX	M	WB	IIZa.	;	;	;	;		;				,,			
	-11	110	LA	171	111	ļ	 	ļ	· •	}		ļ	}	<u></u>	 	ii		, į	\
Sub	‡		 -	 	 	 	 	ļ	· 	}	¦	ļ	}	¦	 	ļļ	<u> </u>	,	
And	↓	- }	Ļ	!	 	 	<u> </u>	¦	. 	ļ	¦ ¦	}	<u> </u>	¦	¦	ļ <i>l</i>	{ {	,	
Sw	1	ļ	<u> </u>	<u> </u>	<u> </u>	ļ	ļ	ļ	. ļ	ļ		ļ	<u> </u>	ļ	ļ	<u> </u>	<u> </u>		
Lw	1	<u> </u>	<u>i</u>	<u>i</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	; 	; !	<u>j j</u>	<u> </u>		
Beq		}	•	•	}	ļ	}	ļ	}							; ;			
Or	T		T	<u> </u>			1	!		[[Γ						
c) Trata	ar de	reorde	nar e	códi	go par	a min	imiza	r el m	úmero	de cio	clos d	e eiec	ución						
					J - 1 - · ·														
2 a)	Diseñ	ar un	multi	olicad	or coi	nbina	cional	l reco	difica	do que	siga	el alg	oritm	o de I	3ooth	, como	el vi	sto en	clase.
para m										1	- 0	2	,			,			,
b) Indi						s ane a	define	n los	dos tir	os de	celda	as util	izados						
c) Mul	tinlica	ar 101	00*11	010	CIOIIC	que	aciiic	11 105	uos n	, , , , , , , , , , , , , , , , , , ,	corac	as atii	izudo	,.					
(2 pun		M 101	JU 11	. 010															
(2 pun	103)																		
3 Sup	onge	mae 11	n forn	nato T	EEE 1	754 ro	ducid	o cor	12 hi	te da	los a	iales '	5 son	de evi	onen	te det	ermin	ar.	
a) ¿Cua																			no

- b= 001011010000 d) Realizar a*b con los operandos anteriores, siguiendo el algoritmo visto en clase.
- (2 puntos)

potencias de 2.)

a= 001011001100

b) ¿Cuál es el mayor número representable?

c) Realizar a-b, con los pasos indicados en clase, si:

add \$1, \$2, \$3 sub \$4, \$5, \$6

AMPLIACIÓN DE ESTRUCTURA DE COMPUTADORES

21 DE JUNIO DE 2002 Teoría

- 1.- Indicar si las siguientes afirmaciones son verdaderas o falsas, indicando el porqué:
 - a) Los multiplicadores de Waugh-Booley son más rápidos que los de Pezaris dado que utilizan sumadores más simples.
 - b) Para sumar números creados uniendo sumadores carry-save en árboles de Wallace, el tiempo de cálculo no depende del tamaño de los números ya que, al calcular el carry y la suma por separado, cada etapa necesita sólo dos niveles lógicos.
 - c) Para calcular un seno mediante el método CORDIC, se itera sumando o restando ángulos cuya tangente es 2⁻ⁱ, hasta que se llega al ángulo deseado. Por tanto el número de iteraciones requerido dependerá del ángulo deseado.
 - d) El resultado de una resta en punto flotante es: 0,111000. Y g= 0, r= 1, s= 0. Por tanto el resultado una vez redondeado, por cualquiera de los métodos excepto el método hacia + infinito, es: 1,110000.
 - e) El estándar del IEEE nº 754, indica que el resultado de cualquier operación en Punto Flotante que siga este estándar dará el mismo resultado que si se hiciera con precisión total y después se redondeara, esto implica que para hacer la multiplicación de dos números con **n** bits de mantisa, se debe disponer de un registro intermedio para almacenar el resultado con **2n-1** bits, y se redondea a partir del contenido de este registro.

(2 puntos en total)

- 2.- Indicar brevemente qué son los tiempos de setup, hold, clk_to_Q, y skew. (1 punto)
- 3.- Diseñar un sumador de 15 bits, a partir de módulos sumadores de 3 bits, construidos mediante anticipación de arrastres, e interconectados mediante puenteo de arrastres.

Indicar en qué instante, medido en etapas lógicas atravesadas, se conoce cada uno de los bits de suma. Indicar claramente, o en el dibujo o mediante las ecuaciones lógicas, de dónde provienen los retardos indicados. (1,5 puntos)