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Summary and Motivation

• Cancer prognosis: early detection of cancer

• Based on the evaluation of tissue samples ⇒ large scale images

•Main goal: Optimize the execution of biomedical image analysis
procedures exclusively on the GPU

• Why do we need HPC here?

1. Due to the large size of the images

– A typical 120K × 120K image occupies more than 40GB

2. Due to the large processing time on CPU
Image size Matlab C++

SMALL 2h 57’ 29” 43’ 40”

MEDIUM 6h 25’ 45” 1h 34’ 51”

LARGE 11h 39’ 28” 2h 51’ 23”

3. Due to the large number of medical samples per patient

– Months or even years of computation

•Our result: optimized library of biomedical image analysis and
classification kernels, including:

– Color conversion

– Feature extraction routines

– Classifiers
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General Framework and Methodology

Process overview

Explored implementations

2

Tile Processing. Color Conversion

• Color conversion procedures are typically GPU-like

• Results attained on GPU are very promising ⇒ Stream-oriented
procedures

• Some results:

Format conversion CPU time GPU time GPU Speedup
RGB to XYZ 140.01 ms 1.27 ms 109.47x
RGB to Luv 273.83 ms 1.42 ms 191.62x
RGB to L*A*B* 267.92 ms 2.23 ms 119.66x
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Feature Extraction: Co-occurrence matrices (I)

• Introduced by Haralick in 1973

• Joint histogram of intensity levels of a pair of pixels with a given
spatial relationship [dx, dy]

• Intermediate data structure to extract features: contrast, correla-
tion,. . .

• Simple example: for a 4 × 4 window, and four intensity levels:
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• Co-occurrence matrix calculation is a CPU-like operation

•Goal: optimize it for GPU calculation

• Main optimization strategies:

1. Discretized co-occurrence matrices ⇒ Smaller ⇒ Fit in shared
memory

2. Non discretized co-occurrence matrices ⇒ Use sparse represen-
tations ⇒ Fit in shared memory

3. Per-pixel calculation of the co-occurrence matrix ⇒ Argenti’s
method (neighbour co-oc. matrices are related)
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Feature Extraction: Co-occurrence matrices (II)

• Potential optimizations according to the shape of the matrix:

– Diagonal dense storage

– Improvement of insertions on sparse formats

– Blocked computation of the diagonal values of the co-occurrence
matrix (in progress)

• Results:

Impact of discretization

Co. size CPU Dense S.up

16x16 2.82 0.23 12.26x

32x32 2.82 0.31 9.09x

64x64 2.82 0.67 4.20x

128x128 2.82 2.09 1.34x

256x256 2.82 7.58 0.37x

Impact of window size

Window CPU Sparse S.up

16x16 2.82 0.39 7.23x

32x32 3.04 0.74 4.10x

64x64 3.08 1.74 1.77x

128x128 2.94 7.70 0.38x

256x256 2.96 46.49 0.06x

• Each optimization focuses a given scenario
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Feature Extraction: Zernike Moments

• Spatial domain filter ⇒ direct way to capture texture properties

• Legendre and Zernike polynomials represent an image by a set of
mutually independent descriptors

• The moments within a window centered at a given pixel can be
interpreted as a convolution of the image with a mask

• The more moments ⇒ The better reconstructed image

•Problem: computational cost (up to order M for an N × N

image requires O(M2N2) adds and mults)

•Experimental results:

All mo- Execution times on a 1024x1024 image Speed-up on GPU versus:
ments of Mukundan Hwang Al-Rawi Direct Mukundan Hwang Al-Rawi

an order (1995) (2006) (2008) on GPU (1995) (2006) (2008)
A4,∗ (3) 1 391.0 258.0 62.5 19.0 73.20x 13.57x 3.28x
A8,∗ (5) 3 820.5 859.0 54.5 36.6 104.38x 23.47x 1.48x
A12,∗ (7) 7 703 1 969.0 62.5 50.5 152.53x 38.99x 1.23x
A16,∗ (9) 13 187.5 3 836.0 78.0 68.2 193.36x 56.24x 1.14x
A20,∗ (11) 20 109.5 6 586.0 93.5 90.0 223.43x 73.17x 1.03x
A24,∗ (13) 28 719 10 617.0 117.5 111.5 257.56x 95.21x 1.05x

• More potential optimizations to be implemented
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Feature Extraction: LBP Operator

• LBP: functional and easy-to-implement texture feature

• Widely used in facial expression recognition, content based image
retrieval,. . .

• Defined within an n × n neighborhood of each pixel:
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• The LBP feature is invariant to rotation and local or global inten-
sity variations

• Some results (including Cg-CUDA comparison):

Image CPU GPU GPU GPU/CPU
size C++ (Cg) (CUDA) speed up
128x128 3.95 1.01 0.072 54.86x
256x256 17.83 1.09 0.140 127.35x
512x512 76.70 1.92 0.415 184.81x
1024x1024 310.65 6.88 1.564 198.62x
2048x2048 1234.96 23.91 6.114 201.98x
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CPU/GPU Cluster Implementation

• Tested on a GPU/CPU cluster (BALE cluster, Ohio Supercom-
puter Center)

• 16 visualization nodes:
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• Using Datacutter middleware for the parallelization

• Attained very good scalability results
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Conclusions and Further Work

• We have developed a set of image processing routines oriented to
the biomedical image analysis

• Attained performance results on GPU depends on the nature of
the operation:

Color LBP Zernike Co-occurrence
conversion feature moments matrices

Input Pixel 3x3 window Image tile Var. size window

Output Pixel Single value Set of values Var. size matrix

Color channels Three One One Three

Computat. range Per-pixel Per-pixel Per-tile Per-pixel

Computat. weight Very light Light Strong Heavy

Operator type Streaming Streaming Recursive Recurrence

Data reuse None Little Heavy Strong

Locality access None Little Strong Heavy

Arithm. intensity Heavy Average Strong Low

ALU or memory Arithmetic Arithm. Arithmetic Memory

intensive and m.a. access

Memory access Low Average Strong Heavy

GPU speed up 25-250x 50-200x 1-2x 0.7-1x

• Most of the computations are performed on the GPU

Further work

• Advanced architectures: Tesla, SLI-based multiGPU systems. . .

• Further optimizations of co-occ. matrices and Zernike moments

• Evaluate the impact of double precision support on modern GPUs
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