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Abstract: During recent years considerable efforts have been devoted to guarantee the 
stability of fuzzy logic control (FLC). Several stability analysis methods have been 
established, and stable control designs have been introduced. This is important to pave the 
way for the use of FLC in applications were no risks should be run. Aerospace is a clear 
example of a field where control must be sure. This paper is motivated by an ESA research 
project on stability of FLC concerning, in particular, aerospace potential applications. The 
paper present a review of the research on FLC stability, both in time and frequency 
domains, including also several alternatives of stable control design methods. In addition, 
there is a section about FLC applications in aerospace. Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Fuzzy logic control (FLC) is an interesting candidate 
to be considered for aerospace use. This method of 
control has demonstrated several advantages, with 
many successful applications. But it seems there is 
some reluctance to use it, due to stability concerns.  
 
Along last years an effort has been done to study the 
stability of FLC. Several analytical methods and tools 
have been developed, offering now the means for a 
good control design with fuzzy logic. 
 
The paper presents a survey of FLC stability, with the 
main lines of research. In addition describes possible 
applications in spacecraft control, with a mention of 
published uses of FLC in aerospace. The paper is a 
summary of part of the results of an ESA research 
project. 
 

2. BASIC ISSUES 
 
In practical terms, the PID is considered as a safe 
control. The matter is if FLC is also safe. 

 
When using a controller, for instance a PID, the study 
of stability refers to a complete system: the plant and 
the controller. The characteristics of the plant are 
important to have, or not, stability. This also happens 
when using FLC. Of course, it is important to know if 
the controller itself is stable. 
 
There are several types of FLCs. In many cases, 
Mamdani (Mamdani, 1974) controllers are static 
nonlinear blocks. There are also PID-like versions 
based on the Mamdani concept. Takagi-Sugeno (TS) 
(Takagi and Sugeno, 1985) controllers are usually 
dynamic blocks. Only dynamic blocks can be stable or 
unstable.  
 
Frequently, TS FLC is based on a previous modelling 
of the plant as a TS system. 
 
From the theoretical point of view, it is not easy to 
define stability. There are many notions and 
definitions. In general two approaches can be 
distinguished. One is to consider the behaviour of 
transients. The other seeks for bounded outputs when 



inputs are bounded (BIBO stability). In linear systems 
the first type of stability implies the second type. In 
nonlinear systems things are different. Besides this, 
stability can be local or in the large (perhaps global). 
be related to equilibrium states or trajectories, etc. In 
general, the engineer should be aware of the type of 
stability that is pertinent for each particular case. 
 
 

3. STABILITY OF FUZZY LOGIC CONTROL 
 
Linear systems are a particular case of a more general 
category: nonlinear systems. Since fuzzy logic can 
approximate any function (Castro, 1995; Zeng, et al. 
2000). the stability of FLC is usually studied under the 
perspective on nonlinear control theory. 
 
There are two main contexts for the analysis of 
stability: time domain or frequency domain. Frequency 
domain methods are mainly used for Mamdani FLC. A 
representative research group using this kind of 
methods is connected with J. Aracil (Seville, Spain). 
Lyapunov (time domain) methods are mostly used for 
Takagi-Sugeno FLC. Here a representative research 
group is connected with K. Tanaka (Tokyo, Japan).  
 
Relevant books with contents on FLC stability are 
(Passino and Yurkovich, 1999; Farinwata, et al., 2000; 
Palm, et al., 1997; Aracil and Gordillo, 2000).  
 
In the following a selection of contributions about FLC 
stability will be presented, according to several 
analysis alternatives.  
 
 
3.1 Time Domain. 
 
There are two main methods. The Lyapunov ´s direct 
method is based on linearization. The Lyapunov´s 
indirect method use Lyapunov functions. 
 
Lyapunov's Direct Method.  
 
(Wu and Lin, 2000) model the nonlinear plant as a TS 
system; then they develop a TS FLC based on classical 
linear quadratic optimal control, giving a sequence of 
local controllers; by linearization they ensure the 
stability of each controller, so the complete control is 
uniformly asymptotically stable with infinite gain 
margin. (Ying, 1994a) studies an equilibrium state of a 
closed-loop system including a TS controller; a 
necessary and sufficient condition for local asymptotic 
stability is given; from this condition a design method 
is described, with examples.  
 
Lyapunov's Indirect Method.  
 
The initial contributions were from (Kiszka, et al., 
1985). with an energetistic approach, and from 
(Birdwell and Wang, 1994) on the stability of the 
Fuzzy-PID controller. In 1992 (Tanaka and Sugeno, 
1992) achieve an important contribution: a sufficient 
stability condition in terms of Lyapunov function; a 

common matrix P, with certain properties, must be 
found for all the subsystems of the TS controller; the 
nonlinear plant is modeled as a TS system. The group 
of Tokyo continued with the use of LMIs to get the P 
matrix (Tanaka, 1995; Wang and Tanaka, 1996; 
Tanaka, et al., 1996a, b, 1997, 1998a, b, c; Tanaka and 
Wang, 2000) including robustness and optimality 
aspects. Besides, (Wang, et al., 1995, 1996) propose 
the Parallel Distributed Compensation (PDC) design 
method for stable control.  
 
Related with the contributions from Tokio, 
(Kawamoto, et al., 1992) is one of the firsts to apply 
the method suggested in 1992 by Tanaka and Sugeno. 
(Wong, et al., 1997, 1998) get an easy way to find a 
common L-function. (Joh, et al., 1998) consider the 
stability problem as related to switching systems: they 
give an interactive algorithm for the choice of the 
common matrix P. (Johansson, et al., 1998, 1999) use 
quadratic piecewise L- functions, so the gain-
scheduling nature of TS FLCs is exploited to get more 
easily the common L-function. (Joh and Langari, 
2000) develop a stable control design method based on 
PDC and LMIs: global asymptotic stability is 
guaranteed.  
 
The passivity approach has demonstrated versatility 
and insight capability. (Calcev, 1998) uses this way to 
study the absolute stability of Mamdani FLC; this FLC 
can stabilize a general nonlinear passive plant, 
including Lagrangian systems. (Calcev, et al., 1998) 
apply passivity for PID-like FLC and derive conditions 
for asymptotic stability for linear and nonlinear plants. 
(Gorez and Calcev, 2000) present a synthesis of their 
work, considering several types of FLCs, including TS 
FLC. In the case of linear plants, these authors derive a 
frequency domain criterion on a Nyquist plot. 
 
 
3.2 Frequency Domain. 
 
In general circle's criterion is more conservative than 
Popov's, and Popov's criterion more conservative than 
Describing Function.   
 
Describing Function. 
 
This is one of the first approaches for FLC stability 
study. (Kickert and Mamdani, 1978) began with an 
equivalence of Mamdani FLCs and multidimensional 
multilevel relay systems. In a series of papers (Ying, 
1993, 1994b, 2000) this equivalence is further 
analysed. (Abdelnour, et al., 1993) use the equivalence 
to study the transient response of a PID-like FLC + 
2nd. order linear plant. 
 
(Wang, et al., 1990) decompose the PID-like FLC into 
a PID plus a nonlinear term; the D.F. is applied to this 
term: the conclusion is that if the PID+plant is stable, 
then the complete FLC+plant is also stable. (Atherton, 
1993) shows how to use the D.F. to study the stability 
of a PID-like FLC controlling a nonlinear plant. (Kim, 
et al., 2000) describe the structure of FLC with fuzzy 



basis functions: the D.F. is found both for static and 
PD-like FLCs. 
 
(Leephakpreeda, 1999; Leephakpreeda and Batur, 
1994) study the stability robustness of FLC; the higher 
harmonics discarded by the D.F. are considered as 
model uncertainty, and H∞ is applied. 
 
The group of Seville has a series of contributions, 
starting with the application of D.F. to Mamdani FLC 
and linear plant (Gordillo, et al., 1997). (Gordillo, et 
al., 1998) extend the stability analysis to the MIMO 
case. (Cuesta, et al., 1999) further extend the method 
for TS FLC with asymmetrical nonlinearities and 
MIMO systems. (Ollero, et al., 2000) present a short 
overview of the frequency domain stability analysis, 
with mention to multiple equilibrium states, D.F. for 
MIMO systems, and robust analysis of limit cycles. 
Other contributions of the group are (Aracil, et al., 
1989, 1993, 1997) and (Ollero, et al., 1998).  
 
Popov's Method. 
 
(Melin, 1995) shows how to apply the Popov's 
criterion (with a Nyquist plot) to PID-like FLC, 
according to sufficient conditions for global 
asymptotic stability. (Wang, 1998) notes that using 
Popov's conditions for stability the requirements on the 
FLC (Mamdani) are not very strong: so there is an 
opportunity to specify the FLC by optimization. (Choi, 
et al., 2000) use a signed-distance to simplify the set of 
rules; absolute stability is proved. 
 
Circle's Criterion. 
 
The first works started with the equivalence with 
multilevel relays: (Ray and Majumder, 1998) studied 
the Mamdani FLC as a static nonlinearity inside a 
sector; then they show how to use the circle's criterion 
for linear SISO and MIMO plants. (Ray, et al., 1984) 
extends the method to PID-like FLCs. 
 
Conicity refers to multivariable circle's criterion. 
(Espada and Barreiro, 1999) employ conicity and 
small-gain to develop a method for re-design of FLCs, 
to robustify them. Previous work was (Espada and 
Barreiro, 1994; Barreiro, 1997). A related research is 
(Xu, et al.,1996).  
 
(Tanaka and Ikeda, 1998) consider the case of Fuzzy 
Phase-Lead Compensation (FPLC); the problem is 
transformed to a TS FLC; following the line of 
(Kitamura and Kurozumi, 1991) and (Katoh, 1993). 
they determine conditions for the stability of the FPLC 
+ SISO linear plant; the paper also applies H∞ for 
FPLC + MIMO linear plants. 
 
(Kang, et al., 1998) develop a design method for Fuzzy 
Feedback Linearization; the nonlinear SISO plant is 
modeled as TS system; the work includes a robust 
stability analysis based on conicity. 
 
 

3.3 Other Studies. 
 
To complete this section, it is worth to mention some 
other studies. For instance, related to nonlinear control 
theory, the chapter of (Layne and Passino, 2000) on 
stability analysis; the contribution of (Lim, 1992) on 
absolute stability for a class of nonlinear plants; the 
paper of (Piegat, 1997) on hyperstability. Robust 
stability has been studied by (Farinwata, 2000; 
Farinwata and Chu, 2000), and by (Fuh and Tung, 
1997; Kang and Kwon, 1997). 
 
Several contributions of (Cao, et al., 1996a, b, 1997a, 
b) deals with observer + state feedback structures. 
(Tanaka and Sano, 1993a, b, c) study stable design in 
the frequency domain. (Kim, et al., 1995) treat stability 
and stabilization. (Kosko, 1998) study generalized 
additive fuzzy systems; this paper includes an 
interesting review. 
 
 

4. STABLE FLC ALTERNATIVES 
 
For FLC synthesis, a way to ensure stability is to 
employ stable control design methods. Several 
alternatives have been proposed for FLC. In the 
following a brief list of contributions is given. 
 
PID-like FLC. 
 
(Malki, et al., 1994): stable fuzzy PD; (Chen and Ying, 
1997): the BIBO stability of nonlinear PI; (Sio and 
Lee, 1998): stability of fuzzy PID.  
 
Mamdani FLC. 
 
(Kania, et al., 1980; Langari and Tomizuka, 1990, 
1993): FLC with internal dynamics. (Chen, et al., 
1995) use a fuzzy relation matrix. 
 
Takagi-Sugeno. 
 
(Sugeno, 1999) presents an extensive survey on stable 
TS FLC designs. 
 
Classic methods. 
 
(Smith and Comer, 1992): cell state space. (Qin and 
Borders, 1994): multiregion. (Wang, 1994b): 
supervisory. (Hajjaji and Rachid, 1994): explicit 
formulas for FLC. (Galichet and Foulloy, 1995): 
synthesis and equivalences of FLC. 
 
Adaptive. 
 
(Wang, 1993, 1994a; Tsay, et al., 1999): stable 
adaptive fuzzy control. (Myung, et al., 2000): 
stabilization of adaptive FLC. (Lee and Vucovich, 
2000): adaptive fuzzy control of nonlinear systems. 
 
 
 
 



Gain-scheduling. 
 
(Zhao, et al., 1993): fuzzy gain-scheduling of PID 
controllers. (Filev, 2000): gain-scheduling and TS 
FLC. (Rugh and Shamma, 2000) present a survey of 
the general topic (not only fuzzy) of gain-scheduling. 
 
Model-based. 
 
(Johansen, 1994; Feng, et al., 1997; Kiriakidis, 1998). 
 
Parallel Distributed Compensation. 
 
( Ma and Sun, 2000; Akar and Ozguner, 2000).  
 
Sliding-mode. 
 
One of the first contributions is (Hwang and Lin, 
1992). (Suyitno, et al., 1993) show that sliding-mode 
FLC is superior to a sliding-mode controller +            
PID. (Palm, 1994) says most FLCs are similar to 
sliding-mode controllers, and that is the reason of their 
robustness. (Palm and Driankov, 1997) present a 
sliding-mode based stability analysis of fuzzy gain-
schedulers. (Wang and Lin, 1998, 1999) use sliding-
mode for tracking. (Tong, et al., 2000) propose an 
adaptive version, for MIMO nonlinear plants.  
 
Feedback alternatives. 
 
(Ma, et al., 1998): controller and observer. (Ying, 
1999): feedback linearization, good discussion. (Cao, 
et al., 1999): fuzzy-state feedback. (Han, et al., 2000): 
dynamic output feedback. 
 
Predictive systems. 
 
(Batur and Kasparian, 1991): predictive fuzzy expert 
controller. (Setnes and Babuska, 2000): fuzzy 
modelling for predictive control. 
 
(Skrjank and Matko, 1994, 2000; Valente de Oliveira 
and Lemos, 2000; Huang, et al., 2000) 
 
Robust FLC. 
 
(Zhao, et al. 1995): model-based TS FLC. (Jadbabaie, 
et al., 2000): observer-based, LMIs. (Mudi and Pal, 
1999): self-tuning PID-like. (Kang, et al. 1998): TS 
model and feedback linearization. (Linder and Shafai, 
1999) apply a TS FLC to the ACC Benchmark with 
good results. (Lam, et al., 2000): TS model of the 
nonlinear plant, FLC design based on LMIs; this paper 
presents an interesting review.  
 
(Lo and Chen, 1999) use Kharitonov regions to design 
robust FLC. (Tanaka, et al., 1996a; Chen, et al., 1996, 
1999) use H∞ for TS FLC and nonlinear plant. 
(Chang, 2000) use H∞ tracking theory and sliding-
mode control for robust tracking of nonlinear MIMO 
systems.  
 
 

Uncertain plants. 
 
(Ying, 1994a): stable FLC for unknown model of the 
plant. (Teixeira and Zak, 1999): stable FLC for 
uncertain nonlinear plant. 
 
Other. 
 
(Langari, 1992, 1993; Lewis and Liu, 1994): nonlinear 
strategies. (Wang, 1999): automatic design of FLC. 
 
 

5. MIXING OF FLC WITH GENETIC 
ALGORITHMS AND/OR NEURAL NETWORKS 

 
Some additional background is needed for the next 
section. Let us include a succinct review of the 
hybridising of fuzzy logic, genetic algorithms (GA) 
and/or neural networks (NN). 
 
The preferred optimization method for fuzzy logic 
control and modelling is the use of GA. Actually, GA 
can make easy the design of FLC (it can be used for 
automatized design). There is a lot of research on 
Genetic-Fuzzy combinations. (Cordon, et al., 1997) 
published a list of 345 research papers related to this. 
First contributions were made, with Mamdani FLC, by 
(Thrift, 1991; Karr, 1991a, b, c). One of the examples 
was the FLC optimization for a satellite rendezvous 
problem.  
 
Fuzzy modelling of plants can be also subject to 
optimization. The book (Babuska, 1998) is useful to 
study this aspect. 
 
An important research topic today is multiobjective 
optimization. Search-based methods are an usual way 
to attack this kind of problems (Ng, 1993). (Fonseca 
and Fleming, 1995, 1998a, b) present a review of 
evolutionary algorithms in multiobjective 
optimization, and develop a Pareto-based method. 
(Ziztler and Thiele, 1999) compare several 
evolutionary methods and propose a new Pareto-based 
method. (Obayashi, et al., 2000; Obayashi, et al., 
2000) use parallel multiobjective GA for supersonic 
wing shape optimisation and the design of cascade 
airfoils. (Sefrioui and Periaux, 2000) develop a 
multiobjective GA based on Nash games; an example 
is given: the optimal design of a nozzle. 
 
The application of multiobjective GA to FLC is 
studied by several papers. (Gacogne, 1997) about the 
Mamdani FLC. (Blumel, et al., 2000) use a multimodel 
approach and Mamdani FLC to design a missile 
autopilot. 
 
Fuzzy systems can be made with neural networks. 
Neural networks are trainable, but cannot directly 
encode structured knowledge. Fuzzy systems do have 
structured knowledge. The idea is to build neuro-fuzzy 
systems combining both advantages: training and 
structure. Some important neuro-fuzzy controllers are 
FALCON (Fuzzy Adaptive Learning Control 



Network) (see the book (Lin and Lee, 1996)). FBFN 
(Fuzzy Basis Function Network) (Wang and Mendel, 
1992). and GARIC (Generalized Approximate 
Reasoning-based Intelligent Controller) (Berenji and 
Khedkar, 1992, 1993).  
 
Some interesting contributions about neuro-fuzzy 
control are (Tanaka and Sano, 1995b) on frequency 
shaping of FLC using NN, (Kim, et al., 1995) on fuzzy 
net controllers design using GA, (French and Rogers, 
1998) on I/O stability of neuro-fuzzy control, (Lin and 
Chung, 1999) on soft-switch of low level controllers, 
and (Neidhoefer and Krishnakumar, 2001) with 3 
levels: NN for inverse model, GA and adaptive critics 
(they propose a near-autonomous aircraft). 
 
Pertinent reference literature on these topics are the 
books: (Man, et al., 1999) on GA with applications, 
(Sanchez, et al., 1997) on GA+FLC applications, 
(Sutton and Barto, 1998) on reinforcement learning. In 
addition there are several survey papers: (Kaynak, et 
al., 2001) on sliding-mode control and artificial 
intelligence, (Kaelbling, et al., 1996) on reinforcement 
learning. 
 
Concerning aerospace, the book (Dracopoulos, 1997) 
offer interesting pages on GA and NN applied to 
satellite attitude control, NN modelling of the Euler 
equations, inverse control reinforcement, satellite 
detumbling, and adaptive attitude control considering 
sensor noise. Likewise, (Fortuna, et al., 2001) propose 
a satellite attitude control with NN. 
 
 

6. AEROSPACE APPLICATIONS OF FUZZY 
CONTROL 

 
There are different types of control problems in 
aerospace. Most of them are related with regulation, 
path-planning and tracking. Some of the possible 
applications of control have been considered by FLC, 
others still remain open for FLC. This review will 
focus on three main problems: attitude control, 
rendezvous and re-entry. 
In general, space systems and missions are complex: 
risks must be minimized in each part and level. 
Conventional bullet-proof control solutions are the 
favourite choice. Given a problem, advanced control 
techniques can be considered if they clearly offer 
advantages and/or conventional solutions cannot solve 
the problem. 
 
The interesting facets of FLC are the following: 
 

- Rules: good for supervisory control, gain-
scheduling, sliding-mode, smooth switching, 
learning. 
- Nonlinear action: optimization of energy/time, 
better transients, inverse control of nonlinear 
systems. 
- Function approximation: modelling, adaptation, 
observer-based control. 
 

6.1  Attitude Control. 
 
There are several constituents in the problem of 
attitude control. There are many types of satellites, 
with different designs and missions. Let us take the 
case of a telescope: good regulation is required, but 
also fast attitude manoeuvres to change targets 
quickly. Other satellites obey to different 
requirements, for monitoring, communications, 
tracking, space exploration, etc. Attitude control is the 
same name for a variety of control problems. 
 
Efforts of automatic control research, about attitude 
control, concentrate on energy/time optimization, gain-
scheduling and adaptation for large-angle manoeuvres, 
linearized feedback, predictive control, sliding-mode 
control, robust control, nonlinear control, high-
precision regulation, singularity avoidance, 
underactuated systems. It is interesting to note that it 
has been shown (Piper and Kwanty, 1992) that attitude 
can exhibit complicated behaviour.  
 
The field of attitude control offer good opportunities 
for FLC, at least following and improving the 
alternatives considered by the previous research. In 
particular, FLC can apply optimal nonlinear control, 
and the hybridising with GA and NN can be useful for 
adaptation/learning.  
 
Actually, the literature on FLC and aerospace offer 
two types of contributions on attitude control: pure 
FLC, and neuro-fuzzy. Examples of pure FLC are 
(Steyn, 1994) that designs a stable FLC for the 
nonlinear plant with constraints, the result is compared 
with an adaptive LQR, and the FLC is better; 
(Satyadas and Krishnakumar, 1997) that present a GA-
optimized attitude FLC; (Nam and Zhang, 1997) that 
present a fuzzy MIMO control of a flexible spacecraft; 
(Chen, et al., 2000) that design a mixed H2/H∞ 
adaptive FLC, using a dynamic game approach, and 
study an application example.  
 
Interesting contributions with neuro-fuzzy control are 
(Berenji, et al., 1994). applying GARIC to the Space 
Shuttle, (Schram, et al., 1994) on robust control with 
Fuzzy CMAC, and (van Buijtenen, et al., 1998) on 
adaptive TS FLC with reinforcement learning (the 
final limit cycle of the attitude is reduced). 
 
 
6.2  Rendezvous. 
 
The rendezvous of satellites follows a sequence of 
phases: homing, closing, final approach, docking and 
structural latching. Guidance, attitude, manoeuvres, 
precision are the main points of the control problems 
involved. In practice manual control is, at least in 
some moments, applied. The desire is to get a 
complete autonomous operation. 
 
 
 
 



Research on this field began with optimization 
purposes. Several control and guidance strategies have 
been studied, such sliding-mode, range-rate nonlinear 
algorithm, and feedback subject to constraints. 
 
Simple FLC solutions have been proposed by (Lea, 
1988) for the proximity operations, (Krishnakumar, et 
al., 1995) doing a FLC synthesis via pilot modelling, 
and (Brown, 1997) with an improved pilot model. This 
is in consonance with the specific capabilities of fuzzy 
logic to easily capture expert knowledge. 
 
Genetic Algorithms have been applied to optimize the 
FLC control of satellite rendezvous. This is one of the 
examples taken by the first contributions on GA and 
FLC (Karr, et al., 1989, 1990, 1997). Likewise, 
(Gopalan, et al., 1995) apply GA and FLC for 
autonomous rendezvous and docking; (Ortega and 
Giron-Sierra, 1998) consider this problem including 
smooth operation. 
 
 
6.3  Re-entry. 
 
Of course, re-entry refers to coming back to the Earth 
surface. This is the case of Space Shuttle and other 
vehicles. The atmosphere put important difficulties to 
be overcome by a careful trajectory optimization and 
control design (good tracking, heat and acceleration 
limits). Other related problem is the entry in other 
atmospheres (if any) when exploring planets. 
 
The research literature on the topic covers many 
control alternatives. Optimization for tracking; 
feedback linearization; scheduling; nonlinear control 
with inverse dynamics. Other kinds of control 
approaches: adaptive, sliding-mode, predictive, robust. 
Some of the studies are devoted to specific cases, such 
the entry of X-33, or the flight of the X-38. It is worth 
to mention the work of (Shin, et al., 2001) with a 
worst-case analysis. 
 
FLC contributions in this are the following. About 
atmospheric re-entry: (Bikdash, et al., 1999, 1997) 
propose a fuzzy guidance of the Space Shuttle using a 
TS FLC with an on-line optimizer. About flight 
control: (Fujimori, et al., 1999, 1998) design a fuzzy 
gain-scheduling, which is better than LQ; (Nho and 
Agarwal, 2000) design a FLC for aircraft landing.  
 
Apart from the FLC applications mentioned above, 
there are others related to intelligent sensors, fault-
diagnosis, training of operators and pilots, specific 
control loops, etc.  
 
 

7. CONCLUSIONS: 
 
A reason that prevents engineers to use FLC is that it 
is supposed stability cannot be guaranteed. Part of this 
paper is devoted to show that now there are methods 
for stability analysis and design of FLC.  
 

It is expected more aerospace applications of FLC in 
the future. Mainly because the general trend to 
autonomous systems. The recent advent of university 
satellite research, may be also an opportunity to 
consider and apply advanced control strategies. 
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