
EdROOM. Automatic C++ Code Generator for
Real Time Systems Modelled with ROOM.

Polo (1), O. R., De la Cruz (2), J.M., Giron-Sierra (2), J.M., Esteban (2), S.

(1) Dept Arquitectura de Computadores y Automatica. Universidad Europea de Madrid
Villaviciosa de Odon, Madrid, Spain.

Tf: (34) 91 6647800 (721); e-mail: opolo@darc.esi.uem.es

(2) Dept. Arquitectura de Computadores y Automatica, Fac. Fisicas. Universidad Complutense de Madrid

28040 Madrid, Spain.

Keywords: Real-time software engineering, real-time software development, real-time code generation

Abstract
The development of real-time control systems is usually part of a design cycle, involving implementation,
experimental control system testing, and re-design. For a faster and better complete development, a
software engineering approach, based on a modelling language, is recommended. A successful alternative
is ROOM: a modelling language with a graphical syntax. In this paper EdROOM is presented: an
environment we developed to graphically edit ROOM models and to automatically generate from the
models C++ real-time control code, for direct experimental application. The code generated is modular,
easy to debug and to modify. The paper describes the design of the environment, with the key aspects of
the mo delling methodology. EdROOM has been used by our research team for several applications, with
satisfactory results. One of these applications concerns the control of actuators of a fast ship for vertical
motion smoothing: this is described as an example of EdROOM use.

1. INTRODUCTION

A quick review of the evolution of
programming shows how the initial problems of
non-structured code (meaning long debugging
efforts), led to solve them by developing and
using methodological approaches of software
engineering, to be able to program reliable
complex applications. Following a complete
discipline, which starts from models of the
software application to be created, the
generation of modular, well-structured code is
promoted. This is the purpose, for the particular
case of real-time systems, of modelling
languages such STATEMATE [1], ROOM [2]
and Real-Time UML [3], with a graphical
syntax to express the relationships between the
system components and the specification of the
behaviour of all of them. Figure 1 shows the
main aspects to be considered by a real-time
application.

 Taking ROOM to analyse some of the practical
control applications we had to solve during our
research, we noticed that after a model is
obtained using the ROOM method, the coding
task was left to the user. We got the idea of
bridging the gap between the graphical syntax
and the real-time code, by creating a visual
interactive environment, we denoted EdROOM,
for diagram-based modelling and automatic
real-time control code generation.

EdROOM provides a solution for fast
development, clear graphical expression of the
design ideas, homogenous code generated, easy
debugging, design components reusability,
encapsulation of detail levels and easy redesign.
EdROOM has been successfully used for the
development of real time control systems. An
interesting example of application has been the
development of a real-time control system to
carry on experiments with a fast ship, at towing
tank scale.

The paper has three sections. First, the design
methodology is summarized. Second, the
EdROOM environment is described. Finally, an
example of application (the fast ship) is given.

sensors

Software

TIME

monitoring

alarms
commands

communication

actuators

A/D

INT

D/A

Figure 1. Real-time control systems

2. THE ROOM METHODOLOGY

The main feature of real time control systems is
that they are in constant interaction with their
environment. The diversity of simultaneous
tasks these systems perform determines their
complexity. The different tasks must be
scheduled with different priorities and according
to events. A concurrent model must be used to
define the system.

The design of this type of systems must provide
the following elements: (1) the determination of
the set of concurrent tasks; (2) the definition of
the communication between them, including its
topology and the valid protocols; (3) the
specification of the behaviour of each of the
tasks and the system scheduling policy. ROOM
provides graphical means to define these three
elements.

2.1. Tasks: actors and actor classes in ROOM

In ROOM each task is assigned to an agent
called actor. The actors are the basic entities
that are used to define the ROOM models.
ROOM uses a multilevel definition of the
structure, since each actor may contain other
actors within itself. Figure 2 shows a part of the
hierarchical structure of a ROOM model. The
first level of the model, composed by five
actors, is graphically represented by the top left
scheme in figure 2. The arrow that originates at
one of its actors points at the scheme on the
right that represents the second level of actors
contained in it The other arrow points at the
scheme of third level actors.

ROOM uses an object oriented solution to
organise the relationships between the actors,
which is based on the definition of actor classes.

2.2 Communication among actors

The actors establish communication between
them by means of message passing. To
determine the set of messages that actors may
exchange between them, the model includes
some protocol classes . Each one defines a set of
input messages and another of output messages
that shall be used for communication.

An actor uses a protocol class when it adds a
port of that class to the interface of its actor
class. Figure 3 shows an actor class with 3 ports
in its external interface(port1, port2 and port4)
and one more in its internal interface (port3).

Communication between actors is established
trough ports. There are several types of ports
identified by different graphical representations.
The ports with a dark border (port2, port3 and
port4) use its protocol class in a conjugate way,
taking the input messages as output messages
and vice versa. Those with the rectangular
internal border, such as port4, are relay ports
and they allow to export a port from a
component actor.

2.3. Behaviour and scheduling. ROOMCharts

and priority of messages

To define the actor behaviour, each actor class
has a state chart called ROOMChart.
ROOMCharts are based on Harel’s Statecharts
formalism [4]. They determine the transition
that will be triggered by a message received at
the present state. Each transition has one signal,
one reception port and one guard associated to
it. The transition is triggered only if there is
coincidence for the signal and port of the
message received and the transition, and the
guard is true. The ROOMCharts allow several
definition levels. This is possible because any
state may contain other sub-states and define its
own context. Figure 4 shows a two level
ROOMChart example where A and B are states
that define their own context.

port1

actor1

port2

port3

port4

Figure 3. Communication ports

a

b

Figure 2. Actors hierarchy in ROOM

In each context, it is possible to define a set of
variables and functions. These are used for the
treatment of the received message when the
actor is in one state of that context. State entries
and exits, as well as transitions, may have
associated functions that are executed when a
message arrived triggers them. These functions
may either belong to this context, or to any of its
higher contexts..

The scheduling policy is established by means
of the priority of messages sent. Each actor
supports a message queue arranged by priority.
In a multitasking environment, the actor that has
the message with the highest priority must
catch the processor time for handling it. ROOM
allows synchronous and asynchronous message
passing.

3. EdROOM: A GRAPHICAL EDITOR OF
ROOM MODELS AND AUTOMATIC

CODE GENERATOR

In order to take advantage of the ROOM
modelling potential, the EdROOM environment
has been developed. EdROOM is a CASE tool
for editing ROOM models that integrates an
automatic code generator

3.1. Model edition

EdROOM supports the management of the actor
classes, the protocol classes and the data classes
by employing windows and mouse. The figure 5
shows the edition canvas of the actor class
structure. To add an component actor, or a port,
to the actor class it is enough to drag the actor
class, or the protocol class, from the lists located
on the right and drop it into the canvas. The tool
bar on the left is used to connect actors.

 With respect to the behaviour, EdROOM
includes a window for editing the state chart of
each actor class. The tool bar located on the top
is used to add states and transitions to the chart.
The figure 6 shows this window. By double
click over one state it is possible to add its sub-
states and define a new context. This is the way
to specify several levels in the behaviour.
Besides, each transition includes a menu for
adding its trigger condition(signal, port, guard) .

Figure 6 ROOMChart edited with EdROOM.

3.2. Implementation: the detail level
 functions and the ROOM services

In EdROOM, the detail level functions used to
handle the input messages are integrated within
the design. To do that, the behaviour edition
window (Figure 6) is used to add variables and
functions to the different contexts. These
functions are linked to the transitions and to the
state entry and exit. EdROOM includes also text
edition windows to define the prototype and the
body of these functions.

Figure 5: class Actor edited with EdROOM.

I
A

B

C

int varT;
void fT();

int varB;
void fB();

t1

t2

t3 t4

t5

t16

t7

t8 t9

t10
t11t12

t14

t15

top

t13

int fA();

Figure 4. ROOMChart example

A3 A2 A1

B1 B2

There is also a set of basic services that have
been provided to simplify the detail level
implementation. These services are:
communication, scheduling, timing, and
memory control. We have developed a library
called mv_rtk.lib that contains them. This
library is linked with the generated code and it
implements all the primitives that are needed for
making these services transparent to the user.

In ROOM, the scheduling is specified by
assigning priorities to the messages. The library
mw_rtk.lib provide the following primitive to
send across a port an asynchronous message
with a specific priority.

port.send(signal, priority, dataP, poolP);

The Timing service is accessible using the
following primitives:

Absolute: ROOMtimer.InformAt(time, dataP,

poolP, priority);

Relative: ROOMtimer.InformIn(interval, dataP,

poolP, priority);

InformAt uses a absolute time parameter while
InformIn uses a relative time parameter, namely
an interval.

3.3. Code generation. Requeriments
 and capabilities

The generated code is a set of C++ source files
that implement the actor classes of the model.
From each actor class one C++ class with the
same name is generated. The generated code
includes the implementation of the structure, the
communication and the behaviour defined in the
design. The detail level functions added to the
behaviour are correctly inserted in this code. To
obtain the executable file, the source files are
compiled and linked with the mv_rtk.lib library.
This library has been implemented to run on the
low cost real time kernel RTKernel [6]. This
kernel works on Intel-based systems, and
supports MS-Windows as a service. We are also
developing other versions of the library, for
other real-time operating systems, in order to
provide portability of EdROOM to other
computing platforms.

The generated code is clear and coherent with
the design. This makes easy the debugging of
the program. As an example we show the main
function of a system that performs a PID control
of the speed of a D.C. motor (figure 7).

#include "mv_rtk.h"
#include "PIDControlE.h"
void main(){

Kernel kernel(ROOMVeryHighPriority);
PIDControl MainActor ("top", NULL, 10,

ROOMNormalPriority,1024);
MainActor.ROOMConfig();
MainActor.ROOMStart();

}

Figure 8 shows the diagram of actors designed
to accomplish the PID control of the DC motor.

The requirements to perform the development
are not stringent: a Pentium 100 with 16 MB of
memory, with Windows 95/98, is enough to run
EdROOM. The compiler used to obtain the
executables was Borland 4.52 or 5.02. (it is free
distribution). The RTKernel licence needed to
develop as many projects as you want costs only
550$. Finally, the computer needed to run the
executable is a standard PC.

Figure 7: PID control of a DC motor

D/A

INT

comands

A/D

Figure 8. PID control ROOM model

4. APPLICATION EXAMPLE: CONTROL
EXPERIMENTS WITH A SHIP ON A

TOWING TANK

Part of our research concerns a fast ferry.
Vertical motions at high speed can have
negative effects on the ship and the passengers
comfort. By means of transom flaps and a T-
foil near the bow, we can counteract the motions
induced by waves. The flaps and the T-foil can
move under control. The problem is to get a
control strategy for optimal motion smoothing.
A scaled down replica, 4.5 meters long has been
built, for experimental studies in a towing tank
institution (CEHIPAR, Madrid). The replica has
flaps and T-foil. There is a step motor to move
the T-foil wings and other to move the Flaps.
The sensors located in the replica measure the
following variables: heave, pitch, the height of
the arriving wave, the drag forces (starboard
and port) and the accelerations in several points
of the replica [5].

We have used an industrial PC to run the control
program. The PC includes the Advantech
PCL812PG data acquisition card, to perform the
A/D conversions of the sensors measurements
and to generate the pulses that control the step
motors. Another card, the TE5312, is also
connected to the PC bus to read the motor
encoders value. The control system has been
developed to interact with the operator
commands and to display the signals on a
monitor. Figure 9 shows a schematic of the
whole system. The clock inside the computer
means the ROOM timing service has been used
to perform the time synchronization tasks.

4.1. Actors structure

The model of the experimental control of the
replica includes 5 inter-connected main actors
(figure 10).

The function of these actors are the following:

-"ship_interface" is employed to provide the
interface with the step motors and the sensors.

-"BGI_console" dis plays the main variables in
the console.

-"operator_input" is employed to handle the
operator commands given with the keyboard.

-"algorithm" executes the control algorithm.

-"planner" coordinates the work of the rest of
the actors in each sampling period. It manages
the start-up and termination of the whole
system.

The "planner" also contains other actor, called
"periodic_Sampling", which manages the
sampling timing. The "ship_Interface" has three
actor components inside too: one of them
performs analog measurements sampling with
the PCL812PG card. Other provides access to
the TE5312 card and reads the motor encoders
value. The third is devoted to move the
appendages in accordance with the calculated
commands. This last includes also two actors
more in its internal structure. One of them
generates the pulses to move the T-foil and the
other moves the flaps.

The hierarchical strategy promoted by
EdROOM, with the definition of several levels
of actors, is an important feature. A complex
task can be divided into simpler ones. This has
been a key point for the success of the
development.

comands

Figure 9. Control of the ship replica

sensors

Figure 10. The five main actors of the
ROOM model of the control program.

4.2. Experience with EdROOM

One of the advantages that we wanted to obtain
was to make easy the re-design of the control
program. With EdROOM its possible add actor
components in a advanced stage of the
development to extend the functionality of some
class actor.

Before the experiments on the water, the control
system has been developed and tested directly
with the replica (hanging from a crane).
Actually, the replica was manually balanced, to
see if sensors and actuators worked correctly.
Some problems (calibration, signs, noise from
motors) were solved by using EdROOM on the
field to modify the control program. Once the
replica was on the water, new problems
appeared. The control strategy (taking signals
from accelerometers and applying a digital PID)
has to be re-designed to include some filtering.
Again, EdROOM was used for a quick re-
design of the control on the field (in the towing
tank, time is money).

 The protocol classes and the behaviour can be
added or extended without problems. Other
important benefit is the possibility of checking
several alternatives. This can be made by a
direct substitution of an actor with another actor
which has the same interface.

The strict interface definition of the ROOM
actors assures the correct integration of the new
actors in the system. This fact is also the key
point of the reusability of the ROOM actors: we
can say that actors work like “plug and play”
software components. As the result of all these
aspects the development of real-time systems
can be stated like the evolution of a basic
prototype that runs properly in each stage.

5. CONCLUSIONS

A visual CASE tool for real time automatic
control code generation has been created. The
tool, called EdROOM, runs under Ms-
Windows. It follows an object oriented
methodology of software engineering, called

ROOM, based in the use of actors. The use of
ROOM guarantees a structured and clear design
of control programs and allows for the reuse of
software components at design level. The
executable code is generated quickly and can be
used in Intel-based systems. This code uses a
low cost real time kernel called RTKernel. The
library mv_rtk.lib implements the memory
control, communication, timing and scheduling
services, necessary to execute the ROOM
model, using RTKernel primitives. This library
is linked with the C++ code generated to create
the executable. The implementation of this
library for other RTOS paves the way to obtain
platform independent applications and reusable
components.

REFERENCES

[1] Harel, David. H. Lanchover, A. Naamad,

A. Pnueli, M. Politi, R. Sherman, A.
Shtull-Trauring, and M. Trakhtenbrot,
1990. "STATEMATE: A Working
Environment for the Development of
Complex Reactive System," IEEE
Transactions on Software Engineering 16
(1990) pp 403-414.

[2] Selic, Brian, Gulleckson, Garth., and
Ward, Paul T. 1994. Real-Time Object
Oriented Modelling. NewYork", John
Wiley and Sons.

[3] Powel Douglass, B. 1998. Real Time
UML. Developing Efficient Objects for
Embedded Systems. Addison Wesley.

[4] Harel, David. July 1987. Statecharts: A
Visual Formalism for Complex Systems.
Science of Computer Programming 8 :231-
274.

[5] R.Polo, O., Esteban, S., Grau, A., De la
Cruz. J.M. 2001. " Control Code
Generator used for Control Experiments in
Ship Scale Model" Accepted for
presentation in the IFAC Conference
CAMS2001 July, 2001.

[6] RTKernel 4.0 and RTKernel 4.5 Real-Time
Multitasking kernel for C/C++. User's
Manual.

