

FUNDAMENTOS DE COMPUTADORES

PRÁCTICA 1: MONTAJE DE UN CIRCUITO COMBINACIONAL USANDO PUERTAS LÓGICAS

El objetivo de esta primera práctica es tomar contacto con el puesto de laboratorio, aprender a realizar el montaje de un circuito combinacional y conseguir que funcione correctamente.

Cada una de las prácticas constará de dos fases:

- 1. **Diseño** del circuito que se pide en el enunciado.
- 2. **Montaje y depuración** de dicho diseño hasta conseguir que funcione correctamente.
- La fase de diseño consiste en realizar, en papel, el diseño (tabla de verdad, expresiones de conmutación,...) del problema que se plantea en el enunciado de cada una de las prácticas. Para realizar esta fase hay que aplicar los conocimientos de circuitos combinacionales explicados en las clases de teoría y problemas.
- La fase de montaje se realizará en el entrenador que hay en cada puesto del laboratorio. El material que se necesita para el montaje del circuito se encuentra en el maletín de laboratorio. Este maletín se debe pedir una vez el alumno se haya dado de alta en laboratorios, a partir del 1 de noviembre.

En esta práctica hay que diseñar y montar en el laboratorio un sistema combinacional que realice la conversión de código Gray de 4 bits a binario (ver figura 1).

Figura 1

El Código Gray es un caso particular de código binario (patentado por Frank Gray en 1953). Consiste en una ordenación de 2ⁿ códigos binarios de tal forma que cada código sólo tenga un dígito binario distinto a su predecesor. Un código Gray de 2 bits sería el de la figura 2:

0	0
0	1
1	1
1	0

Figura 2: Código Gray de 2 bits

Una forma sencilla de construir un código Gray de n bits es utilizar un código Gray de n-1 bits y añadirle un cero por la izquierda. A continuación para completar el código Gray

añadiremos un 1 por la izquierda al código Gray de n-1 bits empezando por el último elemento.

Por ejemplo, para obtener un código Gray de 3 bits partimos del código Gray de 2-bits que se muestra en la figura 2. Se añade un "0" a la izquierda del código Gray de 2-bits. Con esto tenemos los 4 primeros códigos del total de 8. Luego se añade un "1" en la columna de la izquierda y se colocan los códigos Gray de 2 bits en orden inverso. El resultado se muestra en la figura 3. En ella se puede ver que la línea roja hace de espejo para las dos columnas de menor peso.

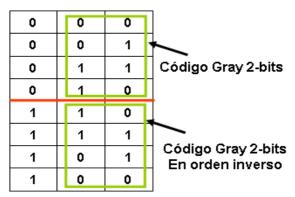


Figura 3: Código Gray de 3 bits

Esta técnica de codificación se originó cuando los circuitos lógicos digitales se realizaban con válvulas de vacío y dispositivos electromecánicos. Los contadores necesitaban potencias muy elevadas a la entrada y generaban picos de ruido cuando varios bits cambiaban simultáneamente. El uso de código Gray garantizó que en cualquier transición variaría tan sólo un bit.

En la actualidad, el código Gray se sigue empleando para el diseño de cualquier circuito electrónico combinacional mediante el uso de un Mapa de Karnaugh, ya que el principio de diseño de buscar transiciones más simples y rápidas entre estados sigue vigente, a pesar de que los problemas de ruido y potencia se hayan reducido.

A modo de ejemplo, a continuación se desarrolla un sistema combinacional que realiza la conversión de código Gray de **3 bits** a binario siguiendo las fases descritas anteriormente.

1. Fase de diseño

Tabla de verdad:

X2	X1	X0	Z 2	Z 1	Z 0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	1
1	0	1	1	1	0
1	1	0	1	0	0
1	1	1	1	0	1

Mapas de Karnaugh y expresiones simplificadas:

$Z_2 = X_2$

La figura 4 muestra la implementación (una representación gráfica del diseño hecha mediante componentes lógicas, conexiones entre ellos, entradas y salidas) del conversor de código usando puertas XOR.

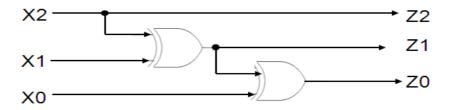


Figura 4: Implementación del conversor de código

En esta práctica El alumno tendrá que diseñar el conversor de código Gray de 4 bits a binario. Obtener la tabla de verdad y la implementación del sistema usando puertas XOR de dos entradas. Se tiene que traer hecho de casa y presentar al profesor de laboratorio al principio de la sesión.

2. Fase de montaje y depuración

El montaje de un circuito se realiza en el entrenador (figura 5) que hay en cada uno de los puestos del laboratorio. Dicho entrenador está compuesto de varias zonas, cada una de las cuales está destinada a una función.

En las prácticas de esta asignatura se van a usar las siguientes funciones del entrenador:

- 1. "DC POWER". Es el módulo de alimentación y contiene:
 - Un generador de **tensión fijo** (5 V, -5 V)
 - Un generador de **tensión variable** (0 ~15 V, 0 ~ -15 V). Girando el potenciómetro "+V" en sentido horario el rango del voltaje varía entre 0 y 15 V. Girando el potenciómetro "-V" observamos que dicha variación se produce entre 0 y -15 V.
 - El terminal "GND" es el terminal de tierra (0 V).

2. "8 BITS LEDS DISPLAYS"

• Estos LEDS se van a usar para mostrar el valor de las **salidas del circuito**.

- Para conectar cada salida del circuito a un led hay que pinchar un cable en el terminal correspondiente
- Si el led está apagado representa salida "0" y encendido salida "1"

3. "8 BITS DATA SWITCHES"

- Estos switches (interruptores) se van a usar para las **entradas del circuito**.
- Para conectar cada entrada del circuito a un interruptor hay que pinchar un cable en el terminal que hay encima
- Con el interruptor hacia abajo la entrada vale "0" y hacia arriba "1"

4. ZONA CENTRAL

• Esta zona es donde se coloca la placa base (figura 6) que es el lugar donde se monta el circuito.

Figura 5: Entrenador

La placa base está compuesta de terminales de conexión. En estos terminales hay que pinchar:

- Las distintas componentes del circuito
- Cables para conectar dichas componentes
- Cables para conectar el circuito con la fuente de alimentación y tierra
- Cables para conectar las entradas del circuito con los interruptores y las salidas con los leds

Para poder montar el circuito en la placa primero hay que conocer el interconexionado de dicha placa, es decir cuáles de sus terminales de conexión están conectados entre sí (son el mismo punto, están cortocircuitados).

El interconexionado de las placas que hay en el laboratorio es como se muestra en la figura 6. Los terminales de conexión sobre los que se ha trazado una línea de color rojo están cortocircuitados. Esto implica que **no se pueden poner en la misma línea dos o más patillas de un mismo componente**.

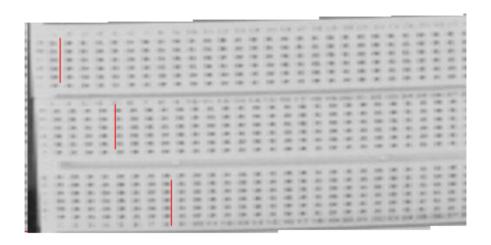


Figura 6: Placa base

El circuito que hay que montar en esta práctica es un conversor de código Gray a binario de 4 bits.

Para montar estos circuitos se necesitan puertas lógicas. Estas se presentan encapsuladas, normalmente en grupos de 4, en un circuito integrado denominado coloquialmente "cucaracha" o "chip". Estos chips se encuentran en el maletín del laboratorio.

El único "chip" que se necesita en esta práctica es el **7486** que contiene **4 puertas XOR de 2 entradas** (figura 7).

Para saber cómo funcionan estos "chips" y cómo están interconectados por dentro hay que usar las llamadas hojas de características que proporciona el fabricante, las cuales contienen una especificación completa del "chip". Estas se encuentran en el laboratorio dentro de la carpeta de electrónica.

A modo de ejemplo, la figura 7 muestra el interconexionado del "chip" 7486 que proporciona la hoja de características de este circuito integrado.

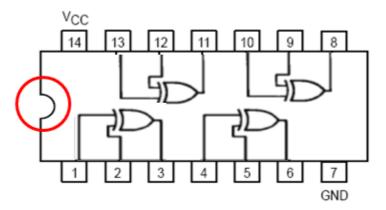


Figura 7: Contenido del circuito integrado 7486

Como se puede ver en la figura 7, este circuito integrado tiene en su interior cuatro puertas XOR de dos entradas cada una y en el exterior 14 patillas, cada una de las cuales tiene una función.

- Las patillas 14 y 7 son las encargadas de alimentar al circuito (darle energía) para que funcione: Conectar **Vcc** a **5V** (normalmente) y **GND** a **tierra**.
- El resto de las patillas son las entradas y salidas de las cuatro puertas XOR tal y como indican los dibujos

Para saber la numeración de las patillas en un "chip" hay que buscar una muesca como la que se ve en el dibujo de la figura 7. Colocando el "chip" en la misma dirección que en dicha figura, la numeración siempre empieza por la patilla inferior izquierda y continúa en sentido antihorario.

Una vez se sabe qué "chips" se necesitan para montar el circuito y se conocen sus interconexiones es recomendable realizar un dibujo del circuito donde las puertas lógicas se han sustituido por los "chips".

En la figura 8 aparece el circuito de la figura 4 en el que se han sustituido las puertas por su correspondiente chip.

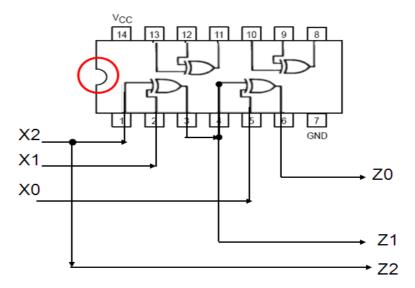


Figura 8: Conversor de código Gray a binario de 3 bits

El alumno tendrá que hacer lo mismo con el circuito que haya obtenido para el conversor de código Gray de 4 bits a binario. El dibujo del circuito implementado con los chips se tiene que traer de casa.

Llegados a este punto hay que montar el circuito en la placa.

Lo primero que hay que hacer es diferenciar entre señales internas y externas, y dentro de las externas cuales son de salida y cuáles de entrada.

- Las señales de **entrada** se conectarán directamente a **los interruptores** del entrenador.
- Las señales de **salida** irán conectadas **a los LEDs** del entrenador.

De esta manera dada una combinación de los valores de la entrada (fijada mediante los interruptores) los leds mostrarán el valor correspondiente de salida.

• Las señales intermedias son las que interconectan distintas puertas lógicas (patillas de los "chips"). Conviene, para poder depurar el circuito, que se marque (por

ejemplo con un trozo de papel) qué cables del circuito corresponden con qué señales intermedias.

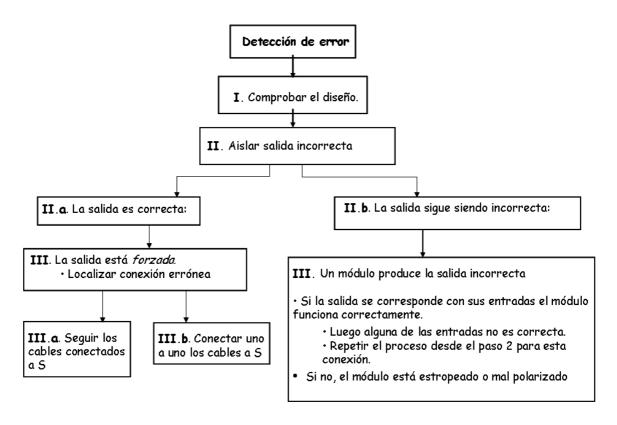
Normas básicas para que funcione un chip

- Tiene que estar alimentado (Vcc=5v y GND=0V)
- Puede haber salidas de un "chip" que no estén interconectadas a nada
- Si se está utilizando una puerta lógica todas sus entradas **se utilicen o no** deben estar conectadas a un valor
- Las puertas lógicas de un "chip" que no se estén utilizando no necesitan tener sus entradas conectadas a un valor

NOTA: Para acelerar la implementación hardware y su posterior depuración es conveniente identificar cada componente del diseño físico con una componente integrada en un "chip", e identificar las salidas y entradas de las componentes con patillas del "chip". Para ello se deben numerar los "chips" y sus patillas (se puede hacer pinchando un pequeño papel con el nombre de la señal correspondiente a cada cable). De este modo sabemos dónde se encuentra físicamente cada una de las componentes del diseño. Así, la implementación es más rápida porque la colocación de los cables se realiza siguiendo la numeración dada en el diseño físico. Además, el proceso de depuración se hace menos pesado porque se pueden identificar rápidamente en la implementación determinados puntos del diseño físico.

Una vez montado el circuito hay que comprobar que funciona. Para ello hay que ir introduciendo mediante los interruptores los diferentes valores de la tabla de verdad y comprobar en los leds si el resultado es el que corresponde.

Si el circuito no funciona correctamente hay que buscar el error. A continuación se explican los pasos a seguir para encontrar errores en circuitos combinacionales


Depuración de un circuito combinacional

Si al comprobar el funcionamiento del circuito se detecta que el estado de una de las salidas no se corresponde con el esperado para la configuración binaria presente en las entradas, se debe buscar la causa del error. Para ello se procede del siguiente modo:

- i) Se debe repasar el diseño que se está implementando para ver si se ha producido un error en la fase de diseño. En caso contrario, se debe pasar al punto ii.
- ii) Una vez que se está seguro que el error se encuentra en la implementación hardware o física del circuito, se debe introducir al circuito la configuración binaria de entrada que produce la salida incorrecta. A continuación, se aísla la salida incorrecta S. Para ello se desconecta esta salida de todos los puntos del circuito donde estuviera conectada. En este momento pueden ocurrir dos cosas:
 - a. La salida S cambia y da el valor correcto. Luego esta salida seguramente esté conectada a otra salida del circuito que la está "forzando", pasar a la fase iii.
 - b. La salida S sigue dando un valor incorrecto, luego hay un módulo que produce una salida incorrecta, pasar a la fase iv.
- iii) La salida S está siendo "forzada" por la salida de otro módulo, está conectada a tierra o está conectada a polarización. Para localizar donde está el error, hay dos procedimientos:

- a. Seguir en la implementación de donde viene cada uno de los cables conectados a la salida S.
- b. Aislar la salida S e ir conectando, uno por uno, los cables a la salida. En el momento en el que el valor de la salida S vuelva a ser incorrecto se habrá identificado la conexión errónea. Corregir la conexión errónea.
- iv) Se ha localizado un módulo M que produce una salida incorrecta. Si la salida del módulo lógico se corresponde con el valor de sus entradas significa que el módulo está funcionando correctamente. Por tanto, alguna de las entradas debe tener un valor lógico incorrecto. Esta entrada se corresponde con una salida de otro módulo lógico. Repítase el proceso a partir del paso II para esta nueva salida. Si la salida del módulo M no se corresponde con el de las entradas, entonces la puerta no está funcionando correctamente debido a que el "chip" está mal polarizado o está estropeado.

El procedimiento de depuración de sistemas combinacionales se presenta esquemáticamente en el siguiente organigrama:

